Abstract
Two rare earth oxysulfides Ln 5V3O7S6 (Ln = La, Ce) have been synthesized and their structures determined. The two isostructural compounds crystallize in the orthorhombic space group Pmmn (no. 59). The structure features one-dimensional edge-sharing VS4O2 octahedron chains parallel to the b axis. The bonding between V and S/O is covalent, and between Ln 3+ and the rest of the matrix ionic. Magnetic susceptibility measurement revealed that V is in a mixed valence state of V3+ and V4+. Its magnetic behavior follows the Curie-Weiss law.
Dedicated to: Professor Richard Dronskowski of the RWTH Aachen on the occasion of his 60th birthday.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Dugue, J., Tien, V., Laruelle, P. Acta Crystallogr. 1985, C41, 1146–1148; https://doi.org/10.1107/s0108270185006928.Search in Google Scholar
2. Disalvo, F. J. Sci. 1990, 247, 649–655; https://doi.org/10.1126/science.247.4943.649.Search in Google Scholar
3. Flahaut, J. Sulfides, selenides and tellurides. In Handbook on the Physics and Chemistry of Rare Earths; Gschneidner, K. A. Jr., Eyring, L. R., Eds. North-Holland Publishing Company: New York, Vol. 4, 1979, pp. 1–88. chapter 31.10.1016/S0168-1273(79)04004-6Search in Google Scholar
4. Ibañez, R., Garcia, A., Fouassier, C., Hagenmuller, P. J. Solid State Chem. 1984, 53, 406–414; https://doi.org/10.1016/0022-4596(84)90119-1.Search in Google Scholar
5. Kolesov, B. A., Vasilyeva, I. G. Mater. Res. Bull. 1992, 27, 775–781; https://doi.org/10.1016/0025-5408(92)90086-f.Search in Google Scholar
6. Peters, T. E., Baglio, J. A. J. Electrochem. Soc. 1972, 119, 230; https://doi.org/10.1149/1.2404167.Search in Google Scholar
7. Abudurusuli, A., Li, J., Pan, S. Dalton Trans. 2021, 50, 3155–3160; https://doi.org/10.1039/d1dt00054c.Search in Google Scholar PubMed
8. Benjamin, L. K., Dube, P., Tabi, C. B., Muiva, C. M. J. Non-Cryst. Solids 2021, 557, 120646; https://doi.org/10.1016/j.jnoncrysol.2021.120646.Search in Google Scholar
9. Cajko, K. O., Dimitrievska, M., Sekulic, D. L., Petrovic, D. M., Lukic-Petrovic, S. R. J. Mater. Sci. Mater. Electron. 2021, 32, 6688–6700.10.1007/s10854-021-05384-wSearch in Google Scholar
10. Hossain, M. M., Hossain, M. A., Moon, S. A., Ali, M. A., Uddin, M. M., Naqib, S. H., Islam, A. K. M. A., Nagao, M., Watauchi, S., Tanaka, I. J. Mater. Sci. Mater. Electron. 2021, 32, 3878–3893; https://doi.org/10.1007/s10854-020-05131-7.Search in Google Scholar
11. Jiang, P., Record, M.-C., Boulet, P. Nanomaterials 2020, 10, 2221; https://doi.org/10.3390/nano10112221.Search in Google Scholar PubMed PubMed Central
12. Kang, M., Martin, I., Sharma, R., Blanco, C., Antonov, S., Prosa, T. J., Larson, D. J., Francois-Saint-Cyr, H., Richardson, K. A. Adv. Opt. Mater. 2021, 9, 2002092; https://doi.org/10.1002/adom.202002092.Search in Google Scholar
13. Kebaili, I., Znaidia, S., Alzahrani, J. S., Alothman, M. A., Boukhris, I., Olarinoye, I. O., Mutuwong, C., Al-Buriahi, M. S. J. Mater. Sci. Mater. Electron. 2021, 32, 15509–15522; https://doi.org/10.1007/s10854-021-06101-3.Search in Google Scholar
14. Mathew, T., Rahul, K. S., Sujith, C. P., Mathew, V. Solid State Sci. 2021, 113, 106456; https://doi.org/10.1016/j.solidstatesciences.2020.106456.Search in Google Scholar
15. Yang, W., Zhang, X., Tilley, S. D. Chem. Mater. 2021, 33, 3467–3489; https://doi.org/10.1021/acs.chemmater.1c00741.Search in Google Scholar
16. Aras, M., Kilic, C., Ciraci, S. J. Phys. Chem. C 2020, 124, 23352–23360; https://doi.org/10.1021/acs.jpcc.0c06917.Search in Google Scholar
17. Chen, G., Howard, S. T., Maghirang, I. I. I. A. B., Nguyen Cong, K., Villaos, R. A. B., Feng, L.-Y., Cai, K., Ganguli, S. C., Swiech, W., Morosan, E., Oleynik, I. I., Chuang, F.-C., Lin, H., Madhavan, V. Phys. Rev. B 2020, 102, 115149; https://doi.org/10.1103/physrevb.102.115149.Search in Google Scholar
18. Guan, Z., Ni, S. ACS Appl. Mater. Interfaces 2020, 12, 53067–53075; https://doi.org/10.1021/acsami.0c13988.Search in Google Scholar PubMed
19. Liu, X., Taddei, K. M., Li, S., Liu, W., Dhale, N., Kadado, R., Berman, D., Cruz, C. D., Lv, B. Phys. Rev. B 2020, 102, 180403; https://doi.org/10.1103/physrevb.102.180403.Search in Google Scholar
20. Polesya, S., Mankovsky, S., Ebert, H., Naumov, P. G., ElGhazali, M. A., Schnelle, W., Medvedev, S., Mangelsen, S., Bensch, W. Phys. Rev. B 2020, 102, 174423; https://doi.org/10.1103/physrevb.102.174423.Search in Google Scholar
21. Tranquada, J. M., Xu, G., Zaliznyak, I. A. J. Phys. Condens. Matter 2020, 32, 374003; https://doi.org/10.1088/1361-648x/ab3b3b.Search in Google Scholar PubMed
22. Vargiamidis, V., Vasilopoulos, P., Tahir, M., Neophytou, N. Phys. Rev. B 2020, 102, 235426; https://doi.org/10.1103/physrevb.102.235426.Search in Google Scholar
23. Vitlina, R. Z., Magarill, L. I., Chaplik, A. V. J. Exp. Theor. Phys. 2020, 131, 1021–1025; https://doi.org/10.1134/s1063776120110114.Search in Google Scholar
24. Xu, W., Ali, S., Jin, Y., Wu, X., Xu, H. ACS Appl. Electron. Mater. 2020, 2, 3853–3858; https://doi.org/10.1021/acsaelm.0c00686.Search in Google Scholar
25. Zhang, F., Zheng, B., Sebastian, A., Olson, D. H., Liu, M., Fujisawa, K., Pham, Y. T. H., Jimenez, V. O., Kalappattil, V., Miao, L., Zhang, T., Pendurthi, R., Lei, Y., Elias, A. L., Wang, Y., Alem, N., Hopkins, P. E., Das, S., Crespi, V. H., Phan, M.-H., Terrones, M. Adv. Sci. 2020, 7, 2001174; https://doi.org/10.1002/advs.202001174.Search in Google Scholar PubMed PubMed Central
26. Chen, Y., Liu, X., Zhou, J., Zou, H.-H., Xiang, B Inorg. Chem. 2021, 60, 2127–2132; https://doi.org/10.1021/acs.inorgchem.0c03484.Search in Google Scholar PubMed
27. Erkisi, A., Yildiz, B., Wang, X., Isik, M., Ozcan, Y., Surucu, G. J. Magn. Magn. Mater. 2021, 519, 167482; https://doi.org/10.1016/j.jmmm.2020.167482.Search in Google Scholar
28. He, G., Xiong, Z., Yang, H., Yang, M., Li, Z., Zeng, T., An, X., Zhang, M. Mater. Lett. 2021, 288, 129320; https://doi.org/10.1016/j.matlet.2021.129320.Search in Google Scholar
29. Lorchat, E., Selig, M., Katsch, F., Yumigeta, K., Tongay, S., Knorr, A., Schneider, C., Hoefling, S. Phys. Rev. Lett. 2021, 126, 037401; https://doi.org/10.1103/physrevlett.126.037401.Search in Google Scholar PubMed
30. Noor, N. A., Rashid, M., Mustafa, G. M., Mahmood, A., Al-Masry, W., Ramay, S. M. J. Alloys Compd. 2021, 856, 157198; https://doi.org/10.1016/j.jallcom.2020.157198.Search in Google Scholar
31. Sheath, B. C., Cassidy, S. J., Clarke, S. J. J. Solid State Chem. 2021, 293, 121761; https://doi.org/10.1016/j.jssc.2020.121761.Search in Google Scholar
32. Su, J., Liu, G., Liu, L., Chen, J., Hu, X., Li, Y., Li, H., Zhai, T. Small 2021, 17, 2005411; https://doi.org/10.1002/smll.202005411.Search in Google Scholar
33. Zhang, Y., Ding, W., Chen, Z., Guo, J., Pan, H., Li, X., Zhao, Z., Liu, Y., Xie, W. J. Phys. Chem. C 2021, 125, 8398–8406; https://doi.org/10.1021/acs.jpcc.0c11449.Search in Google Scholar
34. Cody, J. A., Deudon, C., Cario, L., Meerschaut, A. Mater. Res. Bull. 1997, 32, 1181–1192; https://doi.org/10.1016/s0025-5408(97)00094-9.Search in Google Scholar
35. Dugue, J., Voyan, T., Villers, J. Acta Crystallogr. B 1980, 36, 1294–1297; https://doi.org/10.1107/s056774088000595x.Search in Google Scholar
36. Guo, G., Wang, Y., Chen, J., Zhuang, H., Huang, J., Zhang, Q. Acta Crystallogr. 1995, C51, 1964–1966; https://doi.org/10.1107/s0108270195005026.Search in Google Scholar
37. Sutorik, A. C., Kanatzidis, M. G. Chem. Mater. 1994, 6, 1700–1704; https://doi.org/10.1021/cm00046a023.Search in Google Scholar
38. Rouxel, J. Crystal Chemistry and Properties of Materials with Quasi-One-Dimensional Structures; D. Reidel: Dordrecht, 1986.10.1007/978-94-009-4528-9Search in Google Scholar
39. Kulakov, M. P., Zver’kov, S. A., Hartman, V. K., Kolesnikov, N. N., Zharikov, O. V., Peresada, G. I. Inorg. Mater. Engl. Transl. 1992, 27, 1653–1656.Search in Google Scholar
40. Chono, H., Takasan, K., Yanase, Y. Phys. Rev. B 2020, 102, 174508; https://doi.org/10.1103/physrevb.102.174508.Search in Google Scholar
41. Devarakonda, A., Inoue, H., Fang, S., Ozsoy-Keskinbora, C., Suzuki, T., Kriener, M., Fu, L., Kaxiras, E., Bell, D. C., Checkelsky, J. G. Science (Washington, D.C.) 2020, 370, 231–236; https://doi.org/10.1126/science.aaz6643.Search in Google Scholar PubMed
42. Feig, M., Baenitz, M., Bobnar, M., Lueders, K., Naumann, M., Schnelle, W., Medvediev, S., Ranjith, K. M., Hassinger, E., Weigel, T., Meyer, D. C., Leithe-Jasper, A., Kortus, J., Gumeniuk, R. Phys. Rev. B 2020, 102, 214501; https://doi.org/10.1103/physrevb.102.214501.Search in Google Scholar
43. Fikáček, J., Procházka, P., Stetsovych, V., Průša, S., Vondráček, M., Kormoš, L., Skála, T., Vlaic, P., Caha, O., Carva, K., Čechal, J., Springholz, G., Honolka, J. New J. Phys. 2020, 22, 073050.10.1088/1367-2630/ab9b59Search in Google Scholar
44. Petkov, V., Yang, J., Shastri, S., Ren, Y. Phys. Rev. B 2020, 102, 134119; https://doi.org/10.1103/physrevb.102.134119.Search in Google Scholar
45. Slagle, K., Fu, L. Phys. Rev. B 2020, 102, 235423; https://doi.org/10.1103/physrevb.102.235423.Search in Google Scholar
46. Boubeche, M., Yu, J., Li, C., Wang, H., Zeng, L., He, Y., Wang, X., Su, W., Wang, M., Yao, D.-X., Wang, Z., Luo, H. Chin. Phys. Lett. 2021, 38, 037401; https://doi.org/10.1088/0256-307x/38/3/03740147.Search in Google Scholar
47. Huang, J., Wang, Z., Pang, H., Wu, H., Cao, H., Mo, S.-K., Rustagi, A., Kemper, A. F., Wang, M., Yi, M., Birgeneau, R. J. Phys. Rev. B 2021, 103, 165105; https://doi.org/10.1103/physrevb.103.165105.Search in Google Scholar
48. Lingannan, G., Ganesan, K., Mariappan, S., Sankar, R., Uwatoko, Y., Arumugam, S. J. Supercond. Nov. Magnetism 2021, 34, 725–731; https://doi.org/10.1007/s10948-020-05790-x.Search in Google Scholar
49. Liu, W., Li, S., Wu, H., Dhale, N., Koirala, P., Lv, B. Phys. Rev. Mater. 2021, 5, 014802; https://doi.org/10.1103/physrevmaterials.5.014802.Search in Google Scholar
50. Matsumoto, R., Hou, Z., Adachi, S., Yamamoto, S., Tanaka, H., Takeya, H., Irifune, T., Terakura, K., Takano, Y. Chem. Mater. 2021, 33, 3602–3610; https://doi.org/10.1021/acs.chemmater.1c00272.Search in Google Scholar
51. Nakayama, K., Tsubono, R., Phan, G. N., Nabeshima, F., Shikama, N., Ishikawa, T., Sakishita, Y., Ideta, S., Tanaka, K., Maeda, A., Takahashi, T., Sato, T. Phys. Rev. Res. 2021, 3, L012007; https://doi.org/10.1103/physrevresearch.3.l012007.Search in Google Scholar
52. Zaki, N., Gu, G., Tsvelik, A., Wu, C., Johnson, P. D. Proc. Natl. Acad. Sci. U. S. A. 2021, 18, e2007241118.10.1073/pnas.2007241118Search in Google Scholar
53. Zhang, W., Tian, F., Yao, Y., Huang, X., Xie, H., Huang, Y., Duan, D., Cui, T. Phys. Rev. B 2021, 103, 104102; https://doi.org/10.1103/physrevb.103.104102.Search in Google Scholar
54. Miller, D. C., Mahanti, S. D., Duxbury, P. M. Phys. Rev. B 2018, 97, 045133; https://doi.org/10.1103/physrevb.97.045133.Search in Google Scholar
55. Pell, M. A., Ibers, J. A. Chem. Ber. 1997, 130, 1–8; https://doi.org/10.1002/cber.19971300102.Search in Google Scholar
56. Chen, C., Su, L., Castro Neto, A. H., Pereira, V. M. Phys. Rev. B 2019, 99, 121108; https://doi.org/10.1103/physrevb.99.121108.Search in Google Scholar
57. Coelho, P. M., Lasek, K., Cong, K. N., Li, J., Niu, W., Liu, W., Oleynik, I. I., Batzill, M. J. Phys. Chem. Lett. 2019, 10, 4987–4993; https://doi.org/10.1021/acs.jpclett.9b01949.Search in Google Scholar PubMed
58. Dai, T., Kang, S., Ma, X., Dang, S., Li, H., Ruan, Z., Zhou, W., Hu, P., Li, S., Wu, S. J. Phys. Chem. C 2019, 123, 18711–18716; https://doi.org/10.1021/acs.jpcc.9b05062.Search in Google Scholar
59. Fumega, A. O., Gobbi, M., Dreher, P., Wan, W., Gonzalez-Orellana, C., Pena-Diaz, M., Rogero, C., Herrero-Martin, J., Gargiani, P., Ilyn, M., Ugeda, M. M., Pardo, V., Blanco-Canosa, S. J. Phys. Chem. C 2019, 123, 27802–27810; https://doi.org/10.1021/acs.jpcc.9b08868.Search in Google Scholar
60. Hill, H. M., Chowdhury, S., Simpson, J. R., Rigosi, A. F., Newell, D. B., Berger, H., Tavazza, F., Hight Walker, A. R. Phys. Rev. B 2019, 99, 174110; https://doi.org/10.1103/physrevb.99.174110.Search in Google Scholar PubMed PubMed Central
61. Luican-Mayer, A., Zhang, Y., DiLullo, A., Li, Y., Fisher, B., Ulloa, S. E., Hla, S.-W. Nanoscale 2019, 11, 22351–22358; https://doi.org/10.1039/c9nr07857f.Search in Google Scholar PubMed
62. Ohta, S., Fujisawa, Y., Demura, S., Sakata, H. J. Phys.: Conf. Ser. 2019, 1293, 012004; https://doi.org/10.1088/1742-6596/1293/1/012004.Search in Google Scholar
63. Feng, J., Susilo, R. A., Lin, B., Deng, W., Wang, Y., Li, B., Jiang, K., Chen, Z., Xing, X., Shi, Z., Wang, C., Chen, B. Adv. Electron. Mater. 2020, 6, 1901427; https://doi.org/10.1002/aelm.201901427.Search in Google Scholar
64. Gao, J., Park, J. W., Kim, K., Song, S. K., Park, H. R., Lee, J., Park, J., Chen, F., Luo, X., Sun, Y., Yeom, H. W. Nano Lett. 2020, 20, 6299–6305; https://doi.org/10.1021/acs.nanolett.0c01607.Search in Google Scholar
65. Koley, S., Mohanta, N., Taraphder, A. Eur. Phys. J. B 2020, 93, 77; https://doi.org/10.1140/epjb/e2020-100522-5.Search in Google Scholar
66. Lin, T., Shi, L. Y., Wang, Z. X., Zhang, S. J., Liu, Q. M., Hu, T. C., Dong, T., Wu, D., Wang, N. L. Phys. Rev. B 2020, 101, 205112; https://doi.org/10.1103/physrevb.101.205112.Search in Google Scholar
67. Wang, L., Wu, Y., Yu, Y., Chen, A., Li, H., Ren, W., Lu, S., Ding, S., Yang, H., Xue, Q.-K., Li, F.-S., Wang, G. ACS Nano 2020, 14, 8299–8306; https://doi.org/10.1021/acsnano.0c02072.Search in Google Scholar
68. Wen, C., Xie, Y., Wu, Y., Shen, S., Kong, P., Lian, H., Li, J., Xing, H., Yan, S. Phys. Rev. B 2020, 101, 241404; https://doi.org/10.1103/physrevb.101.241404.Search in Google Scholar
69. Diego, J., Said, A. H., Mahatha, S. K., Bianco, R., Monacelli, L., Calandra, M., Mauri, F., Rossnagel, K., Errea, I., Blanco-Canosa, S. Nat. Commun. 2021, 12, 598; https://doi.org/10.1038/s41467-020-20829-2.Search in Google Scholar
70. Sun, Y.-K., Jeon, Y.-S. Electrochem. Commun. 1999, 1, 597–599; https://doi.org/10.1016/s1388-2481(99)00121-6.Search in Google Scholar
71. Zheng, L.-M., Zhao, J.-S., Lii, K.-H., Zhang, L.-Y., Liu, Y., Xin, X.-Q. J. Chem. Soc., Dalton Trans. 1999, 939–944; https://doi.org/10.1039/a808839j.Search in Google Scholar
72. Ge, B., Chen, B., Li, L. Appl. Surf. Sci. 2021, 550, 149177; https://doi.org/10.1016/j.apsusc.2021.149177.Search in Google Scholar
73. Jayababu, N., Jo, S., Kim, Y., Kim, D. ACS Appl. Mater. Interfaces 2021, 13, 19938–19949; https://doi.org/10.1021/acsami.1c00506.Search in Google Scholar PubMed
74. Lee, W. S. V., Xiong, T., Wang, X., Xue, J. Small Methods 2021, 5, 2000815; https://doi.org/10.1002/smtd.202000815.Search in Google Scholar PubMed
75. Li, Z., Sun, R., Qin, Z., Liu, X., Wang, C., Fan, H., Zhang, Y., Lu, S. Mater. Chem. Front. 2021, 5, 4401–4423; https://doi.org/10.1039/d1qm00085c.Search in Google Scholar
76. Liu, J., Liu, Y., Yang, Y., Bai, X., Liu, L., Yang, K., Ali, H., Zhao, Y., Wu, B., Sa, B., Wen, C., Peng, Q., Sun, Z. ACS Omega 2021, 6, 2956–2965; https://doi.org/10.1021/acsomega.0c05313.Search in Google Scholar PubMed PubMed Central
77. Liu, Z., Qin, M., Guo, S., Li, C., Su, Q., Cao, X., Fang, G., Liang, S. Mater. Chem. Front. 2021, 5, 1694–1715; https://doi.org/10.1039/d0qm01012j.Search in Google Scholar
78. Martinolich, A. J., Zak, J. J., Agyeman-Budu, D. N., Kim, S. S., Bashian, N. H., Irshad, A., Narayan, S. R., Melot, B. C., Nelson Weker, J., See, K. A. Chem. Mater. 2021, 33, 378–391; https://doi.org/10.1021/acs.chemmater.0c04164.Search in Google Scholar
79. Regulacio, M. D., Nguyen, D.-T., Horia, R., Seh, Z. W. Small 2021, 7, 2007683; https://doi.org/10.1002/smll.202007683.Search in Google Scholar PubMed
80. Wang, S., Yang, X., Lee, P.-K., Yu, D. Y. W. J. Alloys Compd. 2021, 874, 159859; https://doi.org/10.1016/j.jallcom.2021.159859.Search in Google Scholar
81. Wu, H., Lu, S., Xu, S., Zhao, J., Wang, Y., Huang, C., Abdelkader, A., Wang, W. A., Xi, K., Guo, Y., Ding, S., Gao, G., Kumar, R. V. ACS Nano 2021, 15, 2506–2519; https://doi.org/10.1021/acsnano.0c06667.Search in Google Scholar PubMed
82. Xing, S., Yang, J., Muska, M., Li, H., Yang, Q. ACS Appl. Mater. Interfaces 2021, 13, 22608–22620; https://doi.org/10.1021/acsami.1c04776.Search in Google Scholar PubMed
83. Zhang, G., Feng, H., Ma, C., Chen, J., Wang, Z., Zheng, W. ACS Appl. Nano Mater. 2021, 4, 3397–3405; https://doi.org/10.1021/acsanm.0c03151.Search in Google Scholar
84. Zhu, D., Zhang, Q., Li, X., Zhang, Y. J. Phys. Chem. C 2021, 125, 4391–4396; https://doi.org/10.1021/acs.jpcc.0c10349.Search in Google Scholar
85. Banerjee, S., Zhang, X., Wang, L.-W. Chem. Mater. 2019, 31, 7265–7276; https://doi.org/10.1021/acs.chemmater.9b01639.Search in Google Scholar
86. Iwase, M., Nakabayashi, M., Shibata, N., Matsuzaki, H., Kobayashi, H., Yamada, T., Domen, K., Watanabe, T. Cryst. Growth Des. 2019, 19, 2419–2427; https://doi.org/10.1021/acs.cgd.9b00091.Search in Google Scholar
87. Larquet, C., Nguyen, A.-M., Glais, E., Paulatto, L., Sassoye, C., Selmane, M., Lecante, P., Maheu, C., Geantet, C., Cardenas, L., Chaneac, C., Gauzzi, A., Sanchez, C., Carenco, S. Chem. Mater. 2019, 31, 5014–5023; https://doi.org/10.1021/acs.chemmater.9b00450.Search in Google Scholar
88. Sal’nikova, E. I., Denisenko, Y., Aleksandrovsky, A. S., Kolesnikov, I. E., Lahderanta, E., Andreev, P. O., Azarapin, N. O., Andreev, O. V., Basova, S. A., Matigorov, A. V. J. Solid State Chem. 2019, 279, 120964.10.1016/j.jssc.2019.120964Search in Google Scholar
89. Sheeraz, M., Kim, H. J., Kim, K.-H., Bae, J.-S., Kim, A. Y., Kang, M., Lee, J., Song, J., Khaliq, A., Kim, J., Cho, B.-G., Joe, S.-Y., Jung, J. H., Ko, J.-H., Koo, T. Y., Noh, T. W., Cho, S., Lee, S., Yang, S. M., Shin, Y.-H., Kim, I. W., Ahn, C. W., Kim, T. H. Phys. Rev. Mater. 2019, 3, 084405; https://doi.org/10.1103/physrevmaterials.3.084405.Search in Google Scholar
90. Vonruti, N., Aschauer, U. J. Mater. Chem. A 2019, 7, 15741–15748; https://doi.org/10.1039/c9ta03116b.Search in Google Scholar
91. Zhang, G., Wang, X. Angew. Chem. Int. Ed. 2019, 58, 15580–15582; https://doi.org/10.1002/anie.201909669.Search in Google Scholar PubMed
92. Zhang, X., Xiao, Y., Wang, R., Fu, P., Zheng, C., Huang, F. Dalton Trans. 2019, 48, 14662–14668; https://doi.org/10.1039/c9dt02780g.Search in Google Scholar PubMed
93. Larquet, C., Carenco, S. Front. Chem. 2020, 8, 00179; https://doi.org/10.3389/fchem.2020.00179.Search in Google Scholar PubMed PubMed Central
94. Liu, J., Chen, J., Li, W., Tian, H., Zhang, X., Li, N., Yan, J., Kunz, M., Chen, B., Zhang, H. J. Phys. Chem. C 2020, 124, 14477–14484; https://doi.org/10.1021/acs.jpcc.0c03231.Search in Google Scholar
95. Nayak, S., Nagaraja, K. K. J. Alloys Compd. 2020, 814, 152137; https://doi.org/10.1016/j.jallcom.2019.152137.Search in Google Scholar
96. Sarma, P. V., Vineesh, T. V., Kumar, R., Sreepal, V., Prasannachandran, R., Singh, A. K., Shaijumon, M. M. ACS Catal. 2020, 10, 6753–6762; https://doi.org/10.1021/acscatal.9b04177.Search in Google Scholar
97. Umehara, M., Zhou, L., Haber, J. A., Guevarra, D., Kan, K., Newhouse, P. F., Gregoire, J. M. ACS Comb. Sci. 2020, 22, 319–326; https://doi.org/10.1021/acscombsci.0c00015.Search in Google Scholar
98. Lu, Z.-T., Yang, S.-H., Liu, W., Guo, S.-P. Chem. Commun. 2021, 57, 3500–3503; https://doi.org/10.1039/d1cc00351h.Search in Google Scholar
99. Sal’nikova, E. I., Denisenko, Y. G., Kolesnikov, I. E., Lahderanta, E., Andreev, O. V., Azarapin, N. O., Basova, S. A., Gubin, A. A., Oreshonkov, A. S. J. Solid State Chem. 2021, 293, 121753; https://doi.org/10.1016/j.jssc.2020.121753.Search in Google Scholar
100. Torres, A., Casals, J. L., Arroyo-de Dompablo, M. E. Chem. Mater. 2021, 33, 2488–2497; https://doi.org/10.1021/acs.chemmater.0c04741.Search in Google Scholar
101. Meerschaut, A., Lafond, A., Palvadeau, P., Deudon, C., Cario, L. Mater. Res. Bull. 2002, 37, 1895–1905; https://doi.org/10.1016/s0025-5408(02)00883-8.Search in Google Scholar
102. Sheldrick, G. M. Sadabs (version 2.03); Bruker AXS Inc.: Madison, Wisconsin (USA), 2003.Search in Google Scholar
103. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G., Spagna, R. J. Appl. Crystallogr. 1999, 32, 115–119; https://doi.org/10.1107/s0021889898007717.Search in Google Scholar
104. Sheldrick, G. Acta Crystallogr. 2015, C71, 3–8.Search in Google Scholar
105. Le Page, Y. J. Appl. Crystallogr. 1987, 20, 264–269; https://doi.org/10.1107/s0021889887086710.Search in Google Scholar
106. Spek, A. Acta Crystallogr. 1990, A46, c34.Search in Google Scholar
107. Doebelin, N., Kleeberg, R. J. Appl. Crystallogr. 2015, 48, 1573–1580; https://doi.org/10.1107/s1600576715014685.Search in Google Scholar
108. Dronskowski, R., Bloechl, P. E. J. Phys. Chem. 1993, 97, 8617–8624; https://doi.org/10.1021/j100135a014.Search in Google Scholar
109. Dronskowski, R. Computational Chemistry of Solid State Materials: A Guide for Materials Scientists, Chemists, Physicists and Others; Wiley-VCH: Weinheim, 2005.10.1002/9783527612277Search in Google Scholar
110. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A. P., Smogunov, A., Umari, P., Wentzcovitch, R. M. J. Phys. Condens. Matter 2009, 21, 395502; https://doi.org/10.1088/0953-8984/21/39/395502.Search in Google Scholar PubMed
111. Maintz, S., Deringer, V. L., Tchougréeff, A. L., Dronskowski, R. J. Comput. Chem. 2016, 37, 1030–1035; https://doi.org/10.1002/jcc.24300.Search in Google Scholar PubMed PubMed Central
112. Herath, U., Tavadze, P., He, X., Bousquet, E., Singh, S., Muñoz, F., Romero, A. H. Comput. Phys. Commun. 2020, 251, 107080; https://doi.org/10.1016/j.cpc.2019.107080.Search in Google Scholar
113. Chakoumakos, B. C., Abraham, M. M., Boatner, L. A. J. Solid State Chem. 1994, 109, 197–202; https://doi.org/10.1006/jssc.1994.1091.Search in Google Scholar
114. Selwood, P. W. Magnetochemistry; Interscience Publishers: New York, 1956.Search in Google Scholar
115. Lueken, H. Magnetochemie; Vieweg+Teubner Verlag: Stuttgart, 1999.10.1007/978-3-322-80118-0Search in Google Scholar
116. Gnezdilov, V., Lemmens, P., Zvyagin, A. A., Cheranovskii, V. O., Lamonova, K., Pashkevich, Y. G., Kremer, R. K., Berger, H. Phys. Rev. B 2008, 78, 184407; https://doi.org/10.1103/physrevb.78.184407.Search in Google Scholar
117. Gerritsen, H. J., Lewis, H. R. Phys. Rev. 1960, 119, 1010–1012; https://doi.org/10.1103/physrev.119.1010.Search in Google Scholar
118. Carlin, R. L. Magnetochemistry; Springer-Verlag: Berlin, 1986.10.1007/978-3-642-70733-9Search in Google Scholar
119. Fisher, M. E., Randall, J. T. Proc. R. Soc. Ser. A Math. Phys. Eng. Sci. 1960, 254, 66–85; https://doi.org/10.1098/rspa.1960.0005.Search in Google Scholar
120. Fisher, M. E. Phil. Mag. A 1962, 7, 1731–1743; https://doi.org/10.1080/14786436208213705.Search in Google Scholar
121. Johnston, D. C., Kremer, R. K., Troyer, M., Wang, X., Klümper, A., Bud’ko, S. L., Panchula, A. F., Canfield, P. C. Phys. Rev. B 2000, 61, 9558–9606; https://doi.org/10.1103/physrevb.61.9558.Search in Google Scholar
122. Law, J. M., Benner, H., Kremer, R. K. J. Phys. Condens. Matter 2013, 25, 065601; https://doi.org/10.1088/0953-8984/25/6/065601.Search in Google Scholar PubMed
123. Zhang, X., Chen, W., Mei, D., Zheng, C., Liao, F., Li, Y., Lin, J., Huang, F. J. Alloys Compd. 2014, 610, 671–675; https://doi.org/10.1016/j.jallcom.2014.05.086.Search in Google Scholar
124. He, J., Wang, Z., Zhang, X., Cheng, Y., Gong, Y., Lai, X., Zheng, C., Lin, J., Huang, F. RSC Adv. 2015, 5, 52629–52635; https://doi.org/10.1039/c5ra05629b.Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/znb-2021-0107).
© 2021 Walter de Gruyter GmbH, Berlin/Boston