Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 22, 2021

Synthesis, structure, and magnetic properties of the quaternary oxysulfides Ln 5V3O7S6 (Ln = La, Ce)

  • Chong Zheng ORCID logo EMAIL logo , Roald Hoffmann EMAIL logo , Timothy S. Perkins , Frank Calvagna , Roxanna Fotovat , Crystal Ferels , Alyssa Mohr , Reinhard K. Kremer , Jürgen Köhler , Arndt Simon , Kejun Bu and Fuqiang Huang

Abstract

Two rare earth oxysulfides Ln 5V3O7S6 (Ln = La, Ce) have been synthesized and their structures determined. The two isostructural compounds crystallize in the orthorhombic space group Pmmn (no. 59). The structure features one-dimensional edge-sharing VS4O2 octahedron chains parallel to the b axis. The bonding between V and S/O is covalent, and between Ln 3+ and the rest of the matrix ionic. Magnetic susceptibility measurement revealed that V is in a mixed valence state of V3+ and V4+. Its magnetic behavior follows the Curie-Weiss law.


Dedicated to: Professor Richard Dronskowski of the RWTH Aachen on the occasion of his 60th birthday.



Corresponding authors: Chong Zheng and Roald Hoffmann, Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA; and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA, E-mail: (C. Zheng), (R. Hoffmann)

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Dugue, J., Tien, V., Laruelle, P. Acta Crystallogr. 1985, C41, 1146–1148; https://doi.org/10.1107/s0108270185006928.Search in Google Scholar

2. Disalvo, F. J. Sci. 1990, 247, 649–655; https://doi.org/10.1126/science.247.4943.649.Search in Google Scholar

3. Flahaut, J. Sulfides, selenides and tellurides. In Handbook on the Physics and Chemistry of Rare Earths; Gschneidner, K. A. Jr., Eyring, L. R., Eds. North-Holland Publishing Company: New York, Vol. 4, 1979, pp. 1–88. chapter 31.10.1016/S0168-1273(79)04004-6Search in Google Scholar

4. Ibañez, R., Garcia, A., Fouassier, C., Hagenmuller, P. J. Solid State Chem. 1984, 53, 406–414; https://doi.org/10.1016/0022-4596(84)90119-1.Search in Google Scholar

5. Kolesov, B. A., Vasilyeva, I. G. Mater. Res. Bull. 1992, 27, 775–781; https://doi.org/10.1016/0025-5408(92)90086-f.Search in Google Scholar

6. Peters, T. E., Baglio, J. A. J. Electrochem. Soc. 1972, 119, 230; https://doi.org/10.1149/1.2404167.Search in Google Scholar

7. Abudurusuli, A., Li, J., Pan, S. Dalton Trans. 2021, 50, 3155–3160; https://doi.org/10.1039/d1dt00054c.Search in Google Scholar PubMed

8. Benjamin, L. K., Dube, P., Tabi, C. B., Muiva, C. M. J. Non-Cryst. Solids 2021, 557, 120646; https://doi.org/10.1016/j.jnoncrysol.2021.120646.Search in Google Scholar

9. Cajko, K. O., Dimitrievska, M., Sekulic, D. L., Petrovic, D. M., Lukic-Petrovic, S. R. J. Mater. Sci. Mater. Electron. 2021, 32, 6688–6700.10.1007/s10854-021-05384-wSearch in Google Scholar

10. Hossain, M. M., Hossain, M. A., Moon, S. A., Ali, M. A., Uddin, M. M., Naqib, S. H., Islam, A. K. M. A., Nagao, M., Watauchi, S., Tanaka, I. J. Mater. Sci. Mater. Electron. 2021, 32, 3878–3893; https://doi.org/10.1007/s10854-020-05131-7.Search in Google Scholar

11. Jiang, P., Record, M.-C., Boulet, P. Nanomaterials 2020, 10, 2221; https://doi.org/10.3390/nano10112221.Search in Google Scholar PubMed PubMed Central

12. Kang, M., Martin, I., Sharma, R., Blanco, C., Antonov, S., Prosa, T. J., Larson, D. J., Francois-Saint-Cyr, H., Richardson, K. A. Adv. Opt. Mater. 2021, 9, 2002092; https://doi.org/10.1002/adom.202002092.Search in Google Scholar

13. Kebaili, I., Znaidia, S., Alzahrani, J. S., Alothman, M. A., Boukhris, I., Olarinoye, I. O., Mutuwong, C., Al-Buriahi, M. S. J. Mater. Sci. Mater. Electron. 2021, 32, 15509–15522; https://doi.org/10.1007/s10854-021-06101-3.Search in Google Scholar

14. Mathew, T., Rahul, K. S., Sujith, C. P., Mathew, V. Solid State Sci. 2021, 113, 106456; https://doi.org/10.1016/j.solidstatesciences.2020.106456.Search in Google Scholar

15. Yang, W., Zhang, X., Tilley, S. D. Chem. Mater. 2021, 33, 3467–3489; https://doi.org/10.1021/acs.chemmater.1c00741.Search in Google Scholar

16. Aras, M., Kilic, C., Ciraci, S. J. Phys. Chem. C 2020, 124, 23352–23360; https://doi.org/10.1021/acs.jpcc.0c06917.Search in Google Scholar

17. Chen, G., Howard, S. T., Maghirang, I. I. I. A. B., Nguyen Cong, K., Villaos, R. A. B., Feng, L.-Y., Cai, K., Ganguli, S. C., Swiech, W., Morosan, E., Oleynik, I. I., Chuang, F.-C., Lin, H., Madhavan, V. Phys. Rev. B 2020, 102, 115149; https://doi.org/10.1103/physrevb.102.115149.Search in Google Scholar

18. Guan, Z., Ni, S. ACS Appl. Mater. Interfaces 2020, 12, 53067–53075; https://doi.org/10.1021/acsami.0c13988.Search in Google Scholar PubMed

19. Liu, X., Taddei, K. M., Li, S., Liu, W., Dhale, N., Kadado, R., Berman, D., Cruz, C. D., Lv, B. Phys. Rev. B 2020, 102, 180403; https://doi.org/10.1103/physrevb.102.180403.Search in Google Scholar

20. Polesya, S., Mankovsky, S., Ebert, H., Naumov, P. G., ElGhazali, M. A., Schnelle, W., Medvedev, S., Mangelsen, S., Bensch, W. Phys. Rev. B 2020, 102, 174423; https://doi.org/10.1103/physrevb.102.174423.Search in Google Scholar

21. Tranquada, J. M., Xu, G., Zaliznyak, I. A. J. Phys. Condens. Matter 2020, 32, 374003; https://doi.org/10.1088/1361-648x/ab3b3b.Search in Google Scholar PubMed

22. Vargiamidis, V., Vasilopoulos, P., Tahir, M., Neophytou, N. Phys. Rev. B 2020, 102, 235426; https://doi.org/10.1103/physrevb.102.235426.Search in Google Scholar

23. Vitlina, R. Z., Magarill, L. I., Chaplik, A. V. J. Exp. Theor. Phys. 2020, 131, 1021–1025; https://doi.org/10.1134/s1063776120110114.Search in Google Scholar

24. Xu, W., Ali, S., Jin, Y., Wu, X., Xu, H. ACS Appl. Electron. Mater. 2020, 2, 3853–3858; https://doi.org/10.1021/acsaelm.0c00686.Search in Google Scholar

25. Zhang, F., Zheng, B., Sebastian, A., Olson, D. H., Liu, M., Fujisawa, K., Pham, Y. T. H., Jimenez, V. O., Kalappattil, V., Miao, L., Zhang, T., Pendurthi, R., Lei, Y., Elias, A. L., Wang, Y., Alem, N., Hopkins, P. E., Das, S., Crespi, V. H., Phan, M.-H., Terrones, M. Adv. Sci. 2020, 7, 2001174; https://doi.org/10.1002/advs.202001174.Search in Google Scholar PubMed PubMed Central

26. Chen, Y., Liu, X., Zhou, J., Zou, H.-H., Xiang, B Inorg. Chem. 2021, 60, 2127–2132; https://doi.org/10.1021/acs.inorgchem.0c03484.Search in Google Scholar PubMed

27. Erkisi, A., Yildiz, B., Wang, X., Isik, M., Ozcan, Y., Surucu, G. J. Magn. Magn. Mater. 2021, 519, 167482; https://doi.org/10.1016/j.jmmm.2020.167482.Search in Google Scholar

28. He, G., Xiong, Z., Yang, H., Yang, M., Li, Z., Zeng, T., An, X., Zhang, M. Mater. Lett. 2021, 288, 129320; https://doi.org/10.1016/j.matlet.2021.129320.Search in Google Scholar

29. Lorchat, E., Selig, M., Katsch, F., Yumigeta, K., Tongay, S., Knorr, A., Schneider, C., Hoefling, S. Phys. Rev. Lett. 2021, 126, 037401; https://doi.org/10.1103/physrevlett.126.037401.Search in Google Scholar PubMed

30. Noor, N. A., Rashid, M., Mustafa, G. M., Mahmood, A., Al-Masry, W., Ramay, S. M. J. Alloys Compd. 2021, 856, 157198; https://doi.org/10.1016/j.jallcom.2020.157198.Search in Google Scholar

31. Sheath, B. C., Cassidy, S. J., Clarke, S. J. J. Solid State Chem. 2021, 293, 121761; https://doi.org/10.1016/j.jssc.2020.121761.Search in Google Scholar

32. Su, J., Liu, G., Liu, L., Chen, J., Hu, X., Li, Y., Li, H., Zhai, T. Small 2021, 17, 2005411; https://doi.org/10.1002/smll.202005411.Search in Google Scholar

33. Zhang, Y., Ding, W., Chen, Z., Guo, J., Pan, H., Li, X., Zhao, Z., Liu, Y., Xie, W. J. Phys. Chem. C 2021, 125, 8398–8406; https://doi.org/10.1021/acs.jpcc.0c11449.Search in Google Scholar

34. Cody, J. A., Deudon, C., Cario, L., Meerschaut, A. Mater. Res. Bull. 1997, 32, 1181–1192; https://doi.org/10.1016/s0025-5408(97)00094-9.Search in Google Scholar

35. Dugue, J., Voyan, T., Villers, J. Acta Crystallogr. B 1980, 36, 1294–1297; https://doi.org/10.1107/s056774088000595x.Search in Google Scholar

36. Guo, G., Wang, Y., Chen, J., Zhuang, H., Huang, J., Zhang, Q. Acta Crystallogr. 1995, C51, 1964–1966; https://doi.org/10.1107/s0108270195005026.Search in Google Scholar

37. Sutorik, A. C., Kanatzidis, M. G. Chem. Mater. 1994, 6, 1700–1704; https://doi.org/10.1021/cm00046a023.Search in Google Scholar

38. Rouxel, J. Crystal Chemistry and Properties of Materials with Quasi-One-Dimensional Structures; D. Reidel: Dordrecht, 1986.10.1007/978-94-009-4528-9Search in Google Scholar

39. Kulakov, M. P., Zver’kov, S. A., Hartman, V. K., Kolesnikov, N. N., Zharikov, O. V., Peresada, G. I. Inorg. Mater. Engl. Transl. 1992, 27, 1653–1656.Search in Google Scholar

40. Chono, H., Takasan, K., Yanase, Y. Phys. Rev. B 2020, 102, 174508; https://doi.org/10.1103/physrevb.102.174508.Search in Google Scholar

41. Devarakonda, A., Inoue, H., Fang, S., Ozsoy-Keskinbora, C., Suzuki, T., Kriener, M., Fu, L., Kaxiras, E., Bell, D. C., Checkelsky, J. G. Science (Washington, D.C.) 2020, 370, 231–236; https://doi.org/10.1126/science.aaz6643.Search in Google Scholar PubMed

42. Feig, M., Baenitz, M., Bobnar, M., Lueders, K., Naumann, M., Schnelle, W., Medvediev, S., Ranjith, K. M., Hassinger, E., Weigel, T., Meyer, D. C., Leithe-Jasper, A., Kortus, J., Gumeniuk, R. Phys. Rev. B 2020, 102, 214501; https://doi.org/10.1103/physrevb.102.214501.Search in Google Scholar

43. Fikáček, J., Procházka, P., Stetsovych, V., Průša, S., Vondráček, M., Kormoš, L., Skála, T., Vlaic, P., Caha, O., Carva, K., Čechal, J., Springholz, G., Honolka, J. New J. Phys. 2020, 22, 073050.10.1088/1367-2630/ab9b59Search in Google Scholar

44. Petkov, V., Yang, J., Shastri, S., Ren, Y. Phys. Rev. B 2020, 102, 134119; https://doi.org/10.1103/physrevb.102.134119.Search in Google Scholar

45. Slagle, K., Fu, L. Phys. Rev. B 2020, 102, 235423; https://doi.org/10.1103/physrevb.102.235423.Search in Google Scholar

46. Boubeche, M., Yu, J., Li, C., Wang, H., Zeng, L., He, Y., Wang, X., Su, W., Wang, M., Yao, D.-X., Wang, Z., Luo, H. Chin. Phys. Lett. 2021, 38, 037401; https://doi.org/10.1088/0256-307x/38/3/03740147.Search in Google Scholar

47. Huang, J., Wang, Z., Pang, H., Wu, H., Cao, H., Mo, S.-K., Rustagi, A., Kemper, A. F., Wang, M., Yi, M., Birgeneau, R. J. Phys. Rev. B 2021, 103, 165105; https://doi.org/10.1103/physrevb.103.165105.Search in Google Scholar

48. Lingannan, G., Ganesan, K., Mariappan, S., Sankar, R., Uwatoko, Y., Arumugam, S. J. Supercond. Nov. Magnetism 2021, 34, 725–731; https://doi.org/10.1007/s10948-020-05790-x.Search in Google Scholar

49. Liu, W., Li, S., Wu, H., Dhale, N., Koirala, P., Lv, B. Phys. Rev. Mater. 2021, 5, 014802; https://doi.org/10.1103/physrevmaterials.5.014802.Search in Google Scholar

50. Matsumoto, R., Hou, Z., Adachi, S., Yamamoto, S., Tanaka, H., Takeya, H., Irifune, T., Terakura, K., Takano, Y. Chem. Mater. 2021, 33, 3602–3610; https://doi.org/10.1021/acs.chemmater.1c00272.Search in Google Scholar

51. Nakayama, K., Tsubono, R., Phan, G. N., Nabeshima, F., Shikama, N., Ishikawa, T., Sakishita, Y., Ideta, S., Tanaka, K., Maeda, A., Takahashi, T., Sato, T. Phys. Rev. Res. 2021, 3, L012007; https://doi.org/10.1103/physrevresearch.3.l012007.Search in Google Scholar

52. Zaki, N., Gu, G., Tsvelik, A., Wu, C., Johnson, P. D. Proc. Natl. Acad. Sci. U. S. A. 2021, 18, e2007241118.10.1073/pnas.2007241118Search in Google Scholar

53. Zhang, W., Tian, F., Yao, Y., Huang, X., Xie, H., Huang, Y., Duan, D., Cui, T. Phys. Rev. B 2021, 103, 104102; https://doi.org/10.1103/physrevb.103.104102.Search in Google Scholar

54. Miller, D. C., Mahanti, S. D., Duxbury, P. M. Phys. Rev. B 2018, 97, 045133; https://doi.org/10.1103/physrevb.97.045133.Search in Google Scholar

55. Pell, M. A., Ibers, J. A. Chem. Ber. 1997, 130, 1–8; https://doi.org/10.1002/cber.19971300102.Search in Google Scholar

56. Chen, C., Su, L., Castro Neto, A. H., Pereira, V. M. Phys. Rev. B 2019, 99, 121108; https://doi.org/10.1103/physrevb.99.121108.Search in Google Scholar

57. Coelho, P. M., Lasek, K., Cong, K. N., Li, J., Niu, W., Liu, W., Oleynik, I. I., Batzill, M. J. Phys. Chem. Lett. 2019, 10, 4987–4993; https://doi.org/10.1021/acs.jpclett.9b01949.Search in Google Scholar PubMed

58. Dai, T., Kang, S., Ma, X., Dang, S., Li, H., Ruan, Z., Zhou, W., Hu, P., Li, S., Wu, S. J. Phys. Chem. C 2019, 123, 18711–18716; https://doi.org/10.1021/acs.jpcc.9b05062.Search in Google Scholar

59. Fumega, A. O., Gobbi, M., Dreher, P., Wan, W., Gonzalez-Orellana, C., Pena-Diaz, M., Rogero, C., Herrero-Martin, J., Gargiani, P., Ilyn, M., Ugeda, M. M., Pardo, V., Blanco-Canosa, S. J. Phys. Chem. C 2019, 123, 27802–27810; https://doi.org/10.1021/acs.jpcc.9b08868.Search in Google Scholar

60. Hill, H. M., Chowdhury, S., Simpson, J. R., Rigosi, A. F., Newell, D. B., Berger, H., Tavazza, F., Hight Walker, A. R. Phys. Rev. B 2019, 99, 174110; https://doi.org/10.1103/physrevb.99.174110.Search in Google Scholar PubMed PubMed Central

61. Luican-Mayer, A., Zhang, Y., DiLullo, A., Li, Y., Fisher, B., Ulloa, S. E., Hla, S.-W. Nanoscale 2019, 11, 22351–22358; https://doi.org/10.1039/c9nr07857f.Search in Google Scholar PubMed

62. Ohta, S., Fujisawa, Y., Demura, S., Sakata, H. J. Phys.: Conf. Ser. 2019, 1293, 012004; https://doi.org/10.1088/1742-6596/1293/1/012004.Search in Google Scholar

63. Feng, J., Susilo, R. A., Lin, B., Deng, W., Wang, Y., Li, B., Jiang, K., Chen, Z., Xing, X., Shi, Z., Wang, C., Chen, B. Adv. Electron. Mater. 2020, 6, 1901427; https://doi.org/10.1002/aelm.201901427.Search in Google Scholar

64. Gao, J., Park, J. W., Kim, K., Song, S. K., Park, H. R., Lee, J., Park, J., Chen, F., Luo, X., Sun, Y., Yeom, H. W. Nano Lett. 2020, 20, 6299–6305; https://doi.org/10.1021/acs.nanolett.0c01607.Search in Google Scholar

65. Koley, S., Mohanta, N., Taraphder, A. Eur. Phys. J. B 2020, 93, 77; https://doi.org/10.1140/epjb/e2020-100522-5.Search in Google Scholar

66. Lin, T., Shi, L. Y., Wang, Z. X., Zhang, S. J., Liu, Q. M., Hu, T. C., Dong, T., Wu, D., Wang, N. L. Phys. Rev. B 2020, 101, 205112; https://doi.org/10.1103/physrevb.101.205112.Search in Google Scholar

67. Wang, L., Wu, Y., Yu, Y., Chen, A., Li, H., Ren, W., Lu, S., Ding, S., Yang, H., Xue, Q.-K., Li, F.-S., Wang, G. ACS Nano 2020, 14, 8299–8306; https://doi.org/10.1021/acsnano.0c02072.Search in Google Scholar

68. Wen, C., Xie, Y., Wu, Y., Shen, S., Kong, P., Lian, H., Li, J., Xing, H., Yan, S. Phys. Rev. B 2020, 101, 241404; https://doi.org/10.1103/physrevb.101.241404.Search in Google Scholar

69. Diego, J., Said, A. H., Mahatha, S. K., Bianco, R., Monacelli, L., Calandra, M., Mauri, F., Rossnagel, K., Errea, I., Blanco-Canosa, S. Nat. Commun. 2021, 12, 598; https://doi.org/10.1038/s41467-020-20829-2.Search in Google Scholar

70. Sun, Y.-K., Jeon, Y.-S. Electrochem. Commun. 1999, 1, 597–599; https://doi.org/10.1016/s1388-2481(99)00121-6.Search in Google Scholar

71. Zheng, L.-M., Zhao, J.-S., Lii, K.-H., Zhang, L.-Y., Liu, Y., Xin, X.-Q. J. Chem. Soc., Dalton Trans. 1999, 939–944; https://doi.org/10.1039/a808839j.Search in Google Scholar

72. Ge, B., Chen, B., Li, L. Appl. Surf. Sci. 2021, 550, 149177; https://doi.org/10.1016/j.apsusc.2021.149177.Search in Google Scholar

73. Jayababu, N., Jo, S., Kim, Y., Kim, D. ACS Appl. Mater. Interfaces 2021, 13, 19938–19949; https://doi.org/10.1021/acsami.1c00506.Search in Google Scholar PubMed

74. Lee, W. S. V., Xiong, T., Wang, X., Xue, J. Small Methods 2021, 5, 2000815; https://doi.org/10.1002/smtd.202000815.Search in Google Scholar PubMed

75. Li, Z., Sun, R., Qin, Z., Liu, X., Wang, C., Fan, H., Zhang, Y., Lu, S. Mater. Chem. Front. 2021, 5, 4401–4423; https://doi.org/10.1039/d1qm00085c.Search in Google Scholar

76. Liu, J., Liu, Y., Yang, Y., Bai, X., Liu, L., Yang, K., Ali, H., Zhao, Y., Wu, B., Sa, B., Wen, C., Peng, Q., Sun, Z. ACS Omega 2021, 6, 2956–2965; https://doi.org/10.1021/acsomega.0c05313.Search in Google Scholar PubMed PubMed Central

77. Liu, Z., Qin, M., Guo, S., Li, C., Su, Q., Cao, X., Fang, G., Liang, S. Mater. Chem. Front. 2021, 5, 1694–1715; https://doi.org/10.1039/d0qm01012j.Search in Google Scholar

78. Martinolich, A. J., Zak, J. J., Agyeman-Budu, D. N., Kim, S. S., Bashian, N. H., Irshad, A., Narayan, S. R., Melot, B. C., Nelson Weker, J., See, K. A. Chem. Mater. 2021, 33, 378–391; https://doi.org/10.1021/acs.chemmater.0c04164.Search in Google Scholar

79. Regulacio, M. D., Nguyen, D.-T., Horia, R., Seh, Z. W. Small 2021, 7, 2007683; https://doi.org/10.1002/smll.202007683.Search in Google Scholar PubMed

80. Wang, S., Yang, X., Lee, P.-K., Yu, D. Y. W. J. Alloys Compd. 2021, 874, 159859; https://doi.org/10.1016/j.jallcom.2021.159859.Search in Google Scholar

81. Wu, H., Lu, S., Xu, S., Zhao, J., Wang, Y., Huang, C., Abdelkader, A., Wang, W. A., Xi, K., Guo, Y., Ding, S., Gao, G., Kumar, R. V. ACS Nano 2021, 15, 2506–2519; https://doi.org/10.1021/acsnano.0c06667.Search in Google Scholar PubMed

82. Xing, S., Yang, J., Muska, M., Li, H., Yang, Q. ACS Appl. Mater. Interfaces 2021, 13, 22608–22620; https://doi.org/10.1021/acsami.1c04776.Search in Google Scholar PubMed

83. Zhang, G., Feng, H., Ma, C., Chen, J., Wang, Z., Zheng, W. ACS Appl. Nano Mater. 2021, 4, 3397–3405; https://doi.org/10.1021/acsanm.0c03151.Search in Google Scholar

84. Zhu, D., Zhang, Q., Li, X., Zhang, Y. J. Phys. Chem. C 2021, 125, 4391–4396; https://doi.org/10.1021/acs.jpcc.0c10349.Search in Google Scholar

85. Banerjee, S., Zhang, X., Wang, L.-W. Chem. Mater. 2019, 31, 7265–7276; https://doi.org/10.1021/acs.chemmater.9b01639.Search in Google Scholar

86. Iwase, M., Nakabayashi, M., Shibata, N., Matsuzaki, H., Kobayashi, H., Yamada, T., Domen, K., Watanabe, T. Cryst. Growth Des. 2019, 19, 2419–2427; https://doi.org/10.1021/acs.cgd.9b00091.Search in Google Scholar

87. Larquet, C., Nguyen, A.-M., Glais, E., Paulatto, L., Sassoye, C., Selmane, M., Lecante, P., Maheu, C., Geantet, C., Cardenas, L., Chaneac, C., Gauzzi, A., Sanchez, C., Carenco, S. Chem. Mater. 2019, 31, 5014–5023; https://doi.org/10.1021/acs.chemmater.9b00450.Search in Google Scholar

88. Sal’nikova, E. I., Denisenko, Y., Aleksandrovsky, A. S., Kolesnikov, I. E., Lahderanta, E., Andreev, P. O., Azarapin, N. O., Andreev, O. V., Basova, S. A., Matigorov, A. V. J. Solid State Chem. 2019, 279, 120964.10.1016/j.jssc.2019.120964Search in Google Scholar

89. Sheeraz, M., Kim, H. J., Kim, K.-H., Bae, J.-S., Kim, A. Y., Kang, M., Lee, J., Song, J., Khaliq, A., Kim, J., Cho, B.-G., Joe, S.-Y., Jung, J. H., Ko, J.-H., Koo, T. Y., Noh, T. W., Cho, S., Lee, S., Yang, S. M., Shin, Y.-H., Kim, I. W., Ahn, C. W., Kim, T. H. Phys. Rev. Mater. 2019, 3, 084405; https://doi.org/10.1103/physrevmaterials.3.084405.Search in Google Scholar

90. Vonruti, N., Aschauer, U. J. Mater. Chem. A 2019, 7, 15741–15748; https://doi.org/10.1039/c9ta03116b.Search in Google Scholar

91. Zhang, G., Wang, X. Angew. Chem. Int. Ed. 2019, 58, 15580–15582; https://doi.org/10.1002/anie.201909669.Search in Google Scholar PubMed

92. Zhang, X., Xiao, Y., Wang, R., Fu, P., Zheng, C., Huang, F. Dalton Trans. 2019, 48, 14662–14668; https://doi.org/10.1039/c9dt02780g.Search in Google Scholar PubMed

93. Larquet, C., Carenco, S. Front. Chem. 2020, 8, 00179; https://doi.org/10.3389/fchem.2020.00179.Search in Google Scholar PubMed PubMed Central

94. Liu, J., Chen, J., Li, W., Tian, H., Zhang, X., Li, N., Yan, J., Kunz, M., Chen, B., Zhang, H. J. Phys. Chem. C 2020, 124, 14477–14484; https://doi.org/10.1021/acs.jpcc.0c03231.Search in Google Scholar

95. Nayak, S., Nagaraja, K. K. J. Alloys Compd. 2020, 814, 152137; https://doi.org/10.1016/j.jallcom.2019.152137.Search in Google Scholar

96. Sarma, P. V., Vineesh, T. V., Kumar, R., Sreepal, V., Prasannachandran, R., Singh, A. K., Shaijumon, M. M. ACS Catal. 2020, 10, 6753–6762; https://doi.org/10.1021/acscatal.9b04177.Search in Google Scholar

97. Umehara, M., Zhou, L., Haber, J. A., Guevarra, D., Kan, K., Newhouse, P. F., Gregoire, J. M. ACS Comb. Sci. 2020, 22, 319–326; https://doi.org/10.1021/acscombsci.0c00015.Search in Google Scholar

98. Lu, Z.-T., Yang, S.-H., Liu, W., Guo, S.-P. Chem. Commun. 2021, 57, 3500–3503; https://doi.org/10.1039/d1cc00351h.Search in Google Scholar

99. Sal’nikova, E. I., Denisenko, Y. G., Kolesnikov, I. E., Lahderanta, E., Andreev, O. V., Azarapin, N. O., Basova, S. A., Gubin, A. A., Oreshonkov, A. S. J. Solid State Chem. 2021, 293, 121753; https://doi.org/10.1016/j.jssc.2020.121753.Search in Google Scholar

100. Torres, A., Casals, J. L., Arroyo-de Dompablo, M. E. Chem. Mater. 2021, 33, 2488–2497; https://doi.org/10.1021/acs.chemmater.0c04741.Search in Google Scholar

101. Meerschaut, A., Lafond, A., Palvadeau, P., Deudon, C., Cario, L. Mater. Res. Bull. 2002, 37, 1895–1905; https://doi.org/10.1016/s0025-5408(02)00883-8.Search in Google Scholar

102. Sheldrick, G. M. Sadabs (version 2.03); Bruker AXS Inc.: Madison, Wisconsin (USA), 2003.Search in Google Scholar

103. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G., Spagna, R. J. Appl. Crystallogr. 1999, 32, 115–119; https://doi.org/10.1107/s0021889898007717.Search in Google Scholar

104. Sheldrick, G. Acta Crystallogr. 2015, C71, 3–8.Search in Google Scholar

105. Le Page, Y. J. Appl. Crystallogr. 1987, 20, 264–269; https://doi.org/10.1107/s0021889887086710.Search in Google Scholar

106. Spek, A. Acta Crystallogr. 1990, A46, c34.Search in Google Scholar

107. Doebelin, N., Kleeberg, R. J. Appl. Crystallogr. 2015, 48, 1573–1580; https://doi.org/10.1107/s1600576715014685.Search in Google Scholar

108. Dronskowski, R., Bloechl, P. E. J. Phys. Chem. 1993, 97, 8617–8624; https://doi.org/10.1021/j100135a014.Search in Google Scholar

109. Dronskowski, R. Computational Chemistry of Solid State Materials: A Guide for Materials Scientists, Chemists, Physicists and Others; Wiley-VCH: Weinheim, 2005.10.1002/9783527612277Search in Google Scholar

110. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A. P., Smogunov, A., Umari, P., Wentzcovitch, R. M. J. Phys. Condens. Matter 2009, 21, 395502; https://doi.org/10.1088/0953-8984/21/39/395502.Search in Google Scholar PubMed

111. Maintz, S., Deringer, V. L., Tchougréeff, A. L., Dronskowski, R. J. Comput. Chem. 2016, 37, 1030–1035; https://doi.org/10.1002/jcc.24300.Search in Google Scholar PubMed PubMed Central

112. Herath, U., Tavadze, P., He, X., Bousquet, E., Singh, S., Muñoz, F., Romero, A. H. Comput. Phys. Commun. 2020, 251, 107080; https://doi.org/10.1016/j.cpc.2019.107080.Search in Google Scholar

113. Chakoumakos, B. C., Abraham, M. M., Boatner, L. A. J. Solid State Chem. 1994, 109, 197–202; https://doi.org/10.1006/jssc.1994.1091.Search in Google Scholar

114. Selwood, P. W. Magnetochemistry; Interscience Publishers: New York, 1956.Search in Google Scholar

115. Lueken, H. Magnetochemie; Vieweg+Teubner Verlag: Stuttgart, 1999.10.1007/978-3-322-80118-0Search in Google Scholar

116. Gnezdilov, V., Lemmens, P., Zvyagin, A. A., Cheranovskii, V. O., Lamonova, K., Pashkevich, Y. G., Kremer, R. K., Berger, H. Phys. Rev. B 2008, 78, 184407; https://doi.org/10.1103/physrevb.78.184407.Search in Google Scholar

117. Gerritsen, H. J., Lewis, H. R. Phys. Rev. 1960, 119, 1010–1012; https://doi.org/10.1103/physrev.119.1010.Search in Google Scholar

118. Carlin, R. L. Magnetochemistry; Springer-Verlag: Berlin, 1986.10.1007/978-3-642-70733-9Search in Google Scholar

119. Fisher, M. E., Randall, J. T. Proc. R. Soc. Ser. A Math. Phys. Eng. Sci. 1960, 254, 66–85; https://doi.org/10.1098/rspa.1960.0005.Search in Google Scholar

120. Fisher, M. E. Phil. Mag. A 1962, 7, 1731–1743; https://doi.org/10.1080/14786436208213705.Search in Google Scholar

121. Johnston, D. C., Kremer, R. K., Troyer, M., Wang, X., Klümper, A., Bud’ko, S. L., Panchula, A. F., Canfield, P. C. Phys. Rev. B 2000, 61, 9558–9606; https://doi.org/10.1103/physrevb.61.9558.Search in Google Scholar

122. Law, J. M., Benner, H., Kremer, R. K. J. Phys. Condens. Matter 2013, 25, 065601; https://doi.org/10.1088/0953-8984/25/6/065601.Search in Google Scholar PubMed

123. Zhang, X., Chen, W., Mei, D., Zheng, C., Liao, F., Li, Y., Lin, J., Huang, F. J. Alloys Compd. 2014, 610, 671–675; https://doi.org/10.1016/j.jallcom.2014.05.086.Search in Google Scholar

124. He, J., Wang, Z., Zhang, X., Cheng, Y., Gong, Y., Lai, X., Zheng, C., Lin, J., Huang, F. RSC Adv. 2015, 5, 52629–52635; https://doi.org/10.1039/c5ra05629b.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/znb-2021-0107).


Received: 2021-08-04
Accepted: 2021-08-22
Published Online: 2021-09-22
Published in Print: 2021-11-25

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.9.2023 from https://www.degruyter.com/document/doi/10.1515/znb-2021-0107/html
Scroll to top button