Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 24, 2021

Structural and electrochemical properties of the binary silicides Eu5Si3 and EuSi

  • Bohdana Belan , Marek Daszkiewicz , Mariya Dzevenko EMAIL logo , Beata Rożdżyńska-Kiełbik , Volodymyr Pavlyuk and Roman Gladyshevskii

Abstract

The crystal structures of Eu5Si3 and EuSi were studied in detail by X-ray single-crystal diffraction. The single crystals were selected from arc-melted and annealed samples. X-ray diffraction was performed at room temperature on an Oxford Diffraction X’calibur Atlas four-circle diffractometer (MoKα radiation). Eu5Si3 adopts the tetragonal Cr5B3-type: space group I4/mcm (# 140), Pearson code tI32, Z = 4, a = 7.9339(6), c = 15.308(2) Å. The compounds with equiatomic composition EuSi crystallize in the structure type TlI: space group Cmcm (# 63), Pearson code oS8, Z = 4, a = 4.6955(6), b = 11.1528(13), c = 3.9845(4) Å. The silicides Eu5Si3 and Li2Si form during electrochemical lithiation (charge process) of EuSi. The electrochemical process 5EuSi + 4Li+ + 4e ↔ Eu5Si3 + 2Li2Si is reversible, and the discharge specific capacity at 1C rate reached 140 mAhg−1 and the Coulombic efficiency is 93%.


Corresponding author: Mariya Dzevenko, Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya Street 6, 79005 Lviv, Ukraine; and Chemical Faculty, Ivan Franko National University of Lviv, Kyryla i Mefodiya Street 6, UA-79005 Lviv, Ukraine, E-mail:

Funding source: National Science Centre, Poland

Award Identifier / Grant number: 2017/25/B/ST8/02179

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Funding for this research was partial provided by: National Science Centre, Poland (grant no. 2017/25/B/ST8/02179).

  3. Conflict of interest statement: There are no conflicts to declare.

References

1. Belan, B. D. Phase Equilibria, Crystal Structure and Properties of Compounds in the Systems Eu–{Fe, Co, Ni, Cu}–{Si, Ge}. Dissertation, University of Lvov, Lviv, 1988.Search in Google Scholar

2. Evers, J., Oehlinger, G., Weiss, A., Hulliger, F. J. Less Common. Met. 1983, 90, L19–L23; https://doi.org/10.1016/0022-5088(83)90080-2.Search in Google Scholar

3. Merlo, F., Palenzona, A., Pani, M. J. Alloys Compd. 2003, 348, 173–175; https://doi.org/10.1016/s0925-8388(02)00851-4.Search in Google Scholar

4. Mishra, R., Hoffmann, R.-D., Pöttgen, R., Trill, H., Mosel, B. D. Z. Anorg. Allg. Chem. 2002, 628, 741–744; https://doi.org/10.1002/1521-3749(200205)628:4<741::aid-zaac741>3.0.co;2-1.10.1002/1521-3749(200205)628:4<741::AID-ZAAC741>3.0.CO;2-1Search in Google Scholar

5. Weitzer, F., Prots, Y. M., Schnelle, W., Hiebl, K., Grin, Y. J. Solid State Chem. 2004, 177, 2115–2121; https://doi.org/10.1016/j.jssc.2004.02.013.Search in Google Scholar

6. Wosylus, A., Prots, Y. M., Burkhardt, U., Schnelle, W., Schwarz, U., Grin, Y. Solid State Sci. 2006, 8, 773–781; https://doi.org/10.1016/j.solidstatesciences.2006.04.003.Search in Google Scholar

7. Pöttgen, R., Grin, Y. Z. Kristallogr. 1997, S12, 137a.Search in Google Scholar

8. Pöttgen, R., Hoffmann, R.-D., Kußmann, D. Z. Anorg. Allg. Chem. 1998, 624, 945–951.10.1002/(SICI)1521-3749(199806)624:6<945::AID-ZAAC945>3.0.CO;2-DSearch in Google Scholar

9. Leon Escamilla, E. A., Corbett, J. D. J. Solid State Chem. 2001, 159, 149–162; https://doi.org/10.1006/jssc.2001.9144.Search in Google Scholar

10. Gladyshevskii, E. I., Krypyakevych, P. I. J. Struct. Chem. 1964, 5, 789–794.10.1007/BF00744231Search in Google Scholar

11. Merlo, F., Fornasini, M. L. J. Less Common. Met. 1967, 13, 603–610; https://doi.org/10.1016/0022-5088(67)90105-1.Search in Google Scholar

12. Belan, B. D., Manyako, M. B., Gladyshevskii, R. E. Chem. Met. Alloys 2008, 1, 343–347; https://doi.org/10.30970/cma1.0077.Search in Google Scholar

13. CrysAlis Pro Software System (version 1.171). Intelligent Data Collection and Processing Software for Small Molecule and Protein Crystallography; Rigaku Oxford Diffraction: Yarnton, Oxfordshire (U. K.), 2015.Search in Google Scholar

14. Sheldrick, G. M. Acta Crystallogr. 2015, C71, 3–8.Search in Google Scholar

15. Parthé, E., Gelato, L., Chabot, B., Penzo, M., Cenzual, K., Gladyshevskii, R. TYPIX. Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types; Springer: Berlin, Heidelberg, 1993.10.1007/978-3-662-10641-9Search in Google Scholar

16. Emsley, J. The Elements, 2nd ed.; Clarendon Press: Oxford, 1991.Search in Google Scholar

17. Villars, P., Cenzual, K., Eds. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2018/19); ASM International®: Materials Park, Ohio (USA), 2018.Search in Google Scholar

18. Andersen, O. K. Phys. Rev. B 1975, 12, 3060–3083; https://doi.org/10.1103/physrevb.12.3060.Search in Google Scholar

19. Andersen, O. K., Jepsen, O. Phys. Rev. Lett. 1984, 53, 2571–2574; https://doi.org/10.1103/physrevlett.53.2571.Search in Google Scholar

20. Andersen, O. K., Jepsen, O., Glötzel, D. Canonical description of the band structures of metals. In Highlights of Condensed Matter Theory; Bassani, F., Fumi, F., Tosi, M. P., Eds. North-Holland: New York, 1985; pp. 59–176.Search in Google Scholar

21. Andersen, O. K., Pawlowska, Z., Jepsen, O. Phys. Rev. B 1986, 34, 5253–5269; https://doi.org/10.1103/physrevb.34.5253.Search in Google Scholar PubMed

22. von Barth, U., Hedin, L. J. Phys. C Solid State Phys. 1972, 5, 1629–1642; https://doi.org/10.1088/0022-3719/5/13/012.Search in Google Scholar

23. Pavlyuk, V. V., Opainych, I. M., Bodak, O. I., Pałasinska, T., Rozdzynska, B., Bala, H. Pol. J. Chem. 1997, 71, 309–313.Search in Google Scholar

24. Horechyy, A. I., Pavlyuk, V. V., Bodak, O. I. Pol. J. Chem. 1999, 10, 1681–1685.Search in Google Scholar

25. Pavlyuk, V., Marciniak, B., Rozycka-Sokolowska, E. Intermetallics 2012, 20, 8–15; https://doi.org/10.1016/j.intermet.2011.08.013.Search in Google Scholar

26. Pavlyuk, V., Solokha, P., Zelinska, O., Paul-Boncour, V., Nowik-Zajac, A. Acta Crystallogr. C 2008, 64, i50–i52; https://doi.org/10.1107/s0108270108015862.Search in Google Scholar PubMed

27. Chumak, I., Dmytriv, G., Pavlyuk, V., Oswald, S., Eckert, J., Trill, H., Eckert, H., Pauly, H., Ehrenberg, H. J. Mater. Res. 2010, 25, 1492–1499; https://doi.org/10.1557/jmr.2010.0191.Search in Google Scholar

28. Stetskiv, A., Rożdżyńska-Kiełbik, B., Kowalczyk, G., Prochwicz, W., Siemion, P., Pavlyuk, V. Solid State Sci. 2014, 38, 35–41; https://doi.org/10.1016/j.solidstatesciences.2014.09.016.Search in Google Scholar

29. Dymek, M., Rozdzynska-Kielbik, B., Pavlyuk, V. V., Bala, H. J. Alloys Compd. 2015, 644, 916–922; https://doi.org/10.1016/j.jallcom.2015.05.072.Search in Google Scholar

30. Giza, K., Bala, H., Pavlyuk, V. V. Mater. Corros. 2009, 60, 29–33; https://doi.org/10.1002/maco.200805025.Search in Google Scholar

31. Pavlyuk, V., Balinska, A., Rozdzynska-Kielbk, B., Pavlyuk, N., Dmytriv, G., Stetskiv, A., Indris, S., Schwarz, B., Ehrenberg, H. J. Alloys Compd. 2020, 838, 155643; https://doi.org/10.1016/j.jallcom.2020.155643.Search in Google Scholar

32. Kowalczyk, G., Kordan, V., Stetskiv, A., Pavlyuk, V. Intermetallics 2016, 70, 53–60; https://doi.org/10.1016/j.intermet.2015.12.004.Search in Google Scholar

Received: 2021-10-19
Accepted: 2021-11-10
Published Online: 2021-11-24
Published in Print: 2022-03-28

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.9.2023 from https://www.degruyter.com/document/doi/10.1515/znb-2021-0163/html
Scroll to top button