Abstract
The crystal structures of Eu5Si3 and EuSi were studied in detail by X-ray single-crystal diffraction. The single crystals were selected from arc-melted and annealed samples. X-ray diffraction was performed at room temperature on an Oxford Diffraction X’calibur Atlas four-circle diffractometer (MoKα radiation). Eu5Si3 adopts the tetragonal Cr5B3-type: space group I4/mcm (# 140), Pearson code tI32, Z = 4, a = 7.9339(6), c = 15.308(2) Å. The compounds with equiatomic composition EuSi crystallize in the structure type TlI: space group Cmcm (# 63), Pearson code oS8, Z = 4, a = 4.6955(6), b = 11.1528(13), c = 3.9845(4) Å. The silicides Eu5Si3 and Li2Si form during electrochemical lithiation (charge process) of EuSi. The electrochemical process 5EuSi + 4Li+ + 4e− ↔ Eu5Si3 + 2Li2Si is reversible, and the discharge specific capacity at 1C rate reached 140 mAhg−1 and the Coulombic efficiency is 93%.
Funding source: National Science Centre, Poland
Award Identifier / Grant number: 2017/25/B/ST8/02179
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: Funding for this research was partial provided by: National Science Centre, Poland (grant no. 2017/25/B/ST8/02179).
-
Conflict of interest statement: There are no conflicts to declare.
References
1. Belan, B. D. Phase Equilibria, Crystal Structure and Properties of Compounds in the Systems Eu–{Fe, Co, Ni, Cu}–{Si, Ge}. Dissertation, University of Lvov, Lviv, 1988.Search in Google Scholar
2. Evers, J., Oehlinger, G., Weiss, A., Hulliger, F. J. Less Common. Met. 1983, 90, L19–L23; https://doi.org/10.1016/0022-5088(83)90080-2.Search in Google Scholar
3. Merlo, F., Palenzona, A., Pani, M. J. Alloys Compd. 2003, 348, 173–175; https://doi.org/10.1016/s0925-8388(02)00851-4.Search in Google Scholar
4. Mishra, R., Hoffmann, R.-D., Pöttgen, R., Trill, H., Mosel, B. D. Z. Anorg. Allg. Chem. 2002, 628, 741–744; https://doi.org/10.1002/1521-3749(200205)628:4<741::aid-zaac741>3.0.co;2-1.10.1002/1521-3749(200205)628:4<741::AID-ZAAC741>3.0.CO;2-1Search in Google Scholar
5. Weitzer, F., Prots, Y. M., Schnelle, W., Hiebl, K., Grin, Y. J. Solid State Chem. 2004, 177, 2115–2121; https://doi.org/10.1016/j.jssc.2004.02.013.Search in Google Scholar
6. Wosylus, A., Prots, Y. M., Burkhardt, U., Schnelle, W., Schwarz, U., Grin, Y. Solid State Sci. 2006, 8, 773–781; https://doi.org/10.1016/j.solidstatesciences.2006.04.003.Search in Google Scholar
7. Pöttgen, R., Grin, Y. Z. Kristallogr. 1997, S12, 137a.Search in Google Scholar
8. Pöttgen, R., Hoffmann, R.-D., Kußmann, D. Z. Anorg. Allg. Chem. 1998, 624, 945–951.10.1002/(SICI)1521-3749(199806)624:6<945::AID-ZAAC945>3.0.CO;2-DSearch in Google Scholar
9. Leon Escamilla, E. A., Corbett, J. D. J. Solid State Chem. 2001, 159, 149–162; https://doi.org/10.1006/jssc.2001.9144.Search in Google Scholar
10. Gladyshevskii, E. I., Krypyakevych, P. I. J. Struct. Chem. 1964, 5, 789–794.10.1007/BF00744231Search in Google Scholar
11. Merlo, F., Fornasini, M. L. J. Less Common. Met. 1967, 13, 603–610; https://doi.org/10.1016/0022-5088(67)90105-1.Search in Google Scholar
12. Belan, B. D., Manyako, M. B., Gladyshevskii, R. E. Chem. Met. Alloys 2008, 1, 343–347; https://doi.org/10.30970/cma1.0077.Search in Google Scholar
13. CrysAlis Pro Software System (version 1.171). Intelligent Data Collection and Processing Software for Small Molecule and Protein Crystallography; Rigaku Oxford Diffraction: Yarnton, Oxfordshire (U. K.), 2015.Search in Google Scholar
14. Sheldrick, G. M. Acta Crystallogr. 2015, C71, 3–8.Search in Google Scholar
15. Parthé, E., Gelato, L., Chabot, B., Penzo, M., Cenzual, K., Gladyshevskii, R. TYPIX. Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types; Springer: Berlin, Heidelberg, 1993.10.1007/978-3-662-10641-9Search in Google Scholar
16. Emsley, J. The Elements, 2nd ed.; Clarendon Press: Oxford, 1991.Search in Google Scholar
17. Villars, P., Cenzual, K., Eds. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2018/19); ASM International®: Materials Park, Ohio (USA), 2018.Search in Google Scholar
18. Andersen, O. K. Phys. Rev. B 1975, 12, 3060–3083; https://doi.org/10.1103/physrevb.12.3060.Search in Google Scholar
19. Andersen, O. K., Jepsen, O. Phys. Rev. Lett. 1984, 53, 2571–2574; https://doi.org/10.1103/physrevlett.53.2571.Search in Google Scholar
20. Andersen, O. K., Jepsen, O., Glötzel, D. Canonical description of the band structures of metals. In Highlights of Condensed Matter Theory; Bassani, F., Fumi, F., Tosi, M. P., Eds. North-Holland: New York, 1985; pp. 59–176.Search in Google Scholar
21. Andersen, O. K., Pawlowska, Z., Jepsen, O. Phys. Rev. B 1986, 34, 5253–5269; https://doi.org/10.1103/physrevb.34.5253.Search in Google Scholar PubMed
22. von Barth, U., Hedin, L. J. Phys. C Solid State Phys. 1972, 5, 1629–1642; https://doi.org/10.1088/0022-3719/5/13/012.Search in Google Scholar
23. Pavlyuk, V. V., Opainych, I. M., Bodak, O. I., Pałasinska, T., Rozdzynska, B., Bala, H. Pol. J. Chem. 1997, 71, 309–313.Search in Google Scholar
24. Horechyy, A. I., Pavlyuk, V. V., Bodak, O. I. Pol. J. Chem. 1999, 10, 1681–1685.Search in Google Scholar
25. Pavlyuk, V., Marciniak, B., Rozycka-Sokolowska, E. Intermetallics 2012, 20, 8–15; https://doi.org/10.1016/j.intermet.2011.08.013.Search in Google Scholar
26. Pavlyuk, V., Solokha, P., Zelinska, O., Paul-Boncour, V., Nowik-Zajac, A. Acta Crystallogr. C 2008, 64, i50–i52; https://doi.org/10.1107/s0108270108015862.Search in Google Scholar PubMed
27. Chumak, I., Dmytriv, G., Pavlyuk, V., Oswald, S., Eckert, J., Trill, H., Eckert, H., Pauly, H., Ehrenberg, H. J. Mater. Res. 2010, 25, 1492–1499; https://doi.org/10.1557/jmr.2010.0191.Search in Google Scholar
28. Stetskiv, A., Rożdżyńska-Kiełbik, B., Kowalczyk, G., Prochwicz, W., Siemion, P., Pavlyuk, V. Solid State Sci. 2014, 38, 35–41; https://doi.org/10.1016/j.solidstatesciences.2014.09.016.Search in Google Scholar
29. Dymek, M., Rozdzynska-Kielbik, B., Pavlyuk, V. V., Bala, H. J. Alloys Compd. 2015, 644, 916–922; https://doi.org/10.1016/j.jallcom.2015.05.072.Search in Google Scholar
30. Giza, K., Bala, H., Pavlyuk, V. V. Mater. Corros. 2009, 60, 29–33; https://doi.org/10.1002/maco.200805025.Search in Google Scholar
31. Pavlyuk, V., Balinska, A., Rozdzynska-Kielbk, B., Pavlyuk, N., Dmytriv, G., Stetskiv, A., Indris, S., Schwarz, B., Ehrenberg, H. J. Alloys Compd. 2020, 838, 155643; https://doi.org/10.1016/j.jallcom.2020.155643.Search in Google Scholar
32. Kowalczyk, G., Kordan, V., Stetskiv, A., Pavlyuk, V. Intermetallics 2016, 70, 53–60; https://doi.org/10.1016/j.intermet.2015.12.004.Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston