Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 21, 2022

Tl2[B10H10] und Tl2[B12H12]: Kristallstrukturen, Raman-Spektren und Tl+-Lone-Pair-Lumineszenz im Vergleich

Tl2[B10H10] and Tl2[B12H12]: crystal structures, Raman spectra and Tl+ lone-pair luminescence in comparison
  • Kevin U. Bareiß , Fabian M. Kleeberg , David Enseling , Thomas Jüstel and Thomas Schleid EMAIL logo


Thallium(I) decahydro-closo-decaborate Tl2[B10H10] and thallium(I) dodecahydro-closo-dodecaborate Tl2[B12H12] are readily available as microcrystalline powders from reactions of thallium(I) carbonate Tl2[CO3] with aqueous solutions of the respective free acid (H3O)2[B10H10] or (H3O)2[B12H12]. Tl2[B12H12] crystallizes with an anti-fluorite related structure (cubic, Fm3, a = 1074.23(8) pm, Z = 4). Each Tl+ cation is coordinated by four icosahedral [B12H12]2– anions (d(B–B) = 180–181 pm) providing a twelvefold coordination sphere of hydrogen atoms (d(Tl–H) = 296 pm). Tl2[B10H10] crystallizes monoclinically in the space group P21/n with a = 704.03(5), b = 1111.45(8), c = 1281.16(9) pm and β = 94.912(3)° for Z = 4. The bicapped square antiprismatic [B10H10]2– anions (d(B–B) = 147–176 pm to the two apical boron atoms, d(B–B) = 161–199 pm within the corpus) again form distorted tetrahedra around the (Tl1)+, but square pyramids around the (Tl2)+ cations. Thus (Tl1)+ is coordinated by 12 hydrogen atoms (d(Tl1–H) = 275–315 pm), but (Tl2)+ only by 11 of them (d(Tl2–H) = 267–357 pm). Both compounds show a greenish-yellow photoluminescence caused by an interconfigurational 6sp6s2 emission (3Pn1S0, n = 0–2) at the Tl+ cation.

Professor Holger Braunschweig zum 60. Geburtstag gewidmet.

Corresponding author: Thomas Schleid, Universität Stuttgart, Stuttgart, Germany, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.


1. Tiritiris, I., Schleid, Th. Z. Anorg. Allg. Chem. 2001, 627, 1836–1845;<1836::aid-zaac1836>;2-a.10.1002/1521-3749(200108)627:8<1836::AID-ZAAC1836>3.0.CO;2-ASearch in Google Scholar

2. Tiritiris, I., Schleid, Th. Z. Anorg. Allg. Chem. 2004, 630, 541–546; in Google Scholar

3. Van, Ng.-D., Kleeberg, F. M., Schleid, Th. Z. Anorg. Allg. Chem. 2015, 641, 2484–2489; in Google Scholar

4. Tiritiris, I., Schleid, Th. Z. Anorg. Allg. Chem. 2008, 634, 317–324; in Google Scholar

5. Tiritiris, I., Schleid, Th. Z. Anorg. Allg. Chem. 2005, 631, 1593–1596; in Google Scholar

6. Tiritiris, I. Untersuchungen zu Reaktivität, Aufbau und struktureller Dynamik von salzartigen closo-Dodekaboraten. Dissertation, Universität Stuttgart, Stuttgart, 2004.Search in Google Scholar

7. Tiritiris, I., Schleid, Th. Z. Anorg. Allg. Chem. 2002, 628, 1411–1418;<1411::aid-zaac1411>;2-x.10.1002/1521-3749(200206)628:6<1411::AID-ZAAC1411>3.0.CO;2-XSearch in Google Scholar

8. Yousufuddin, M., Her, J.-H., Zhou, W., Jalisatgi, S. S., Udovic, T. J. Inorg. Chim. Acta. 2009, 362, 3155–3158; in Google Scholar

9. Ponomarev, V. I., Lyubeznova, T. Y., Solntsev, K. A., Kuznetsov, N. T. Koord. Khim. 1991, 17, 21–27.Search in Google Scholar

10. Tiritiris, I., Schleid, Th. Z. Anorg. Allg. Chem. 2003, 629, 1390–1402; in Google Scholar

11. Tiritiris, I., Schleid, Th., Müller, K., Preetz, W. Z. Anorg. Allg. Chem. 2000, 626, 323–325;<323::aid-zaac323>;2-q.10.1002/(SICI)1521-3749(200002)626:2<323::AID-ZAAC323>3.0.CO;2-QSearch in Google Scholar

12. Tiritiris, I., Van, Ng.-D., Schleid, Th. Z. Anorg. Allg. Chem. 2011, 637, 682–688; in Google Scholar

13. Kleeberg, F. M., Zimmermann, L. W., Schleid, Th. J. Cluster Sci. 2022, 33; in Google Scholar

14. Zimmermann, L. W., Van, Ng.-D., Gudat, D., Schleid, Th. Angew. Chem. Int. Ed. 2016, 128, 1942–1945; in Google Scholar

15. Kleeberg, F. M. Synthese und Strukturaufklärung neuer salzartiger Dekahydro-closo-Dekaborate und Dodekahydro-closo-Dodekaborate sowie deren halogenierter Derivate. Dissertation, Universität Stuttgart, Stuttgart, 2017.Search in Google Scholar

16. Knoth, W. H., Miller, H. C., Sauer, J. C., Balthis, J. H., Chia, Y. T., Muetterties, E. L. Inorg. Chem. 1964, 3, 159–167; in Google Scholar

17. Kunkely, H., Vogler, A. Inorg. Chim. Acta. 2007, 360, 679–680; in Google Scholar

18. Dobrott, R. D., Lipscomb, W. N. J. Chem. Phys. 1962, 37, 1779–1784; in Google Scholar

19. Hofmann, K., Albert, B. Z. Kristallogr. 2005, 220, 142–146; in Google Scholar

20. Otwinowski, Z., Minor, W. Methods Enzymol. 1997, 276, 307–326; in Google Scholar

21. Stoe & Cie. X-RED32 (version 1.31); Stoe & Cie: Darmstadt, Germany, 2005.Search in Google Scholar

22. Sheldrick, G. M. SHELXS/L-97, Programs for Crystal Structure Determination; University of Göttingen: Göttingen, 1997.Search in Google Scholar

23. Osram Sylvania Color Calculator 7.77, downloaded December 2021. in Google Scholar

24. Shannon, R. D. Acta Crystallogr. 1976, A32, 751–767; in Google Scholar

25. Van, Ng.-D., Tiritiris, I., Schleid, Th. Z. Anorg. Allg. Chem. 2004, 630, 1764; in Google Scholar

26. Muetterties, E. L., Merrifield, R. E., Miller, H. C., Knoth, W. H., Downing, J. R. J. Am. Chem. Soc. 1962, 84, 2506–2508; in Google Scholar

27. Weber, W., Thorpe, M. F. J. Phys. Chem. Solid. 1975, 36, 967–974; in Google Scholar

28. Abdul-Fattah, M., Butler, I. Canad. J. Spectrosc. 1977, 22, 110–112.Search in Google Scholar

29. Boyle, L. L., Parker, Y. M. Mol. Phys. 1980, 39, 95–109; in Google Scholar

30. Leites, L. A., Bukalov, S. S., Kurbakova, A. P., Kaganski, M. M., Gaft, Y., Kuznetsov, N. T., Zakharova, I. A. Spectrochim. Acta 1982, 38A, 1047–1056; in Google Scholar

31. Leites, L. A., Kurbakova, A. P., Kaganskii, M. M., Gaft, Y. L., Zakharova, I. A., Kuznetsov, N. T. Izvest. Akad. Nauk SSSR Ser. Khim. 1983, 10, 2284–2292.Search in Google Scholar

32. Tiritiris, I., Weidlein, J., Schleid, Th. Z. Naturforsch. 2005, 60b, 627–639; in Google Scholar

33. Preetz, W., Srebny, H.-G. Z. Naturforsch. 1984, 39b, 6–13; in Google Scholar

34. Weidlein, J., Müller, U., Dehnicke, K. Schwingungsspektroskopie; Thieme-Verlag: Stuttgart, 1988; pp. S. 142–144.Search in Google Scholar

35. Blasse, G., Grabmeier, B. C. Luminescent Materials; Springer-Verlag: Berlin, Heidelberg, New York, 1994.10.1007/978-3-642-79017-1Search in Google Scholar

36. Seitz, F. J. Chem. Phys. 1938, 6, 150–162; in Google Scholar

37. Nagy, R., Wollentin, R. W., Lui, C. K. J. Electrochem. Soc. 1950, 97, 29–32; in Google Scholar

38. Yen, W. M., Shionoya, S., Yamamoto, H. Phosphor Handbook; CRC Press: Boca Raton, London, New York, 2007.10.1201/9781420005233Search in Google Scholar

39. Brauer, P., Aberle, N., Knothe, M. Z. Naturforsch. 1967, 22a, 2059–2066; in Google Scholar

40. Clapp, R. H., Ginther, R. J. J. Opt. Soc. Am. 1947, 37, 355–362; in Google Scholar PubMed

41. Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112–122; in Google Scholar

Erhalten: 2022-01-13
Angenommen: 2022-01-23
Online erschienen: 2022-02-21
Erschienen im Druck: 2022-03-28

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 2.10.2023 from
Scroll to top button