Abstract
Dark octahedral crystals of K1−x[Fe1−xSi
x
O2] with x ≈ 0.2 were synthesized under ultra-alkaline conditions in a KOH hydroflux at 200 °C. The compound is a member of the solid solution series between SiO2 and K[FeO2]. Due to its SiO2 content, K0.8[Fe0.8Si0.2O2] is much less sensitive to moisture than K[FeO2]. The crystal structure is a stuffed cristobalite with a charged framework of vertex-sharing [MO4/2] tetrahedra (M = Fe3+, Si4+) and potassium counter ions in the large voids of the framework. It has the pseudo-symmetry and metrics of the cubic space group
Dedicated to Professor Martin Lerch on the Occasion of his 60th Birthday.
Funding source: Deutsche Forschungsgemeinschaft
Award Identifier / Grant number: 438795198
Acknowledgment
We acknowledge technical support by M. Münch (TU Dresden).
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This work was financially supported by the Deutsche Forschungsgemeinschaft (project-id: 438795198).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Albrecht, R. Exploration of the Hydroflux Synthesis. Ph.D. Thesis, TU Dresden, Germany, 2021.Search in Google Scholar
2. Albrecht, R., Graßme, F., Doert, T., Ruck, M. Z. Naturforsch. B 2020, 75, 951–957; https://doi.org/10.1515/znb-2020-0147.Search in Google Scholar
3. Albrecht, R., Menning, H., Doert, T., Ruck, M. Acta Crystallogr. E 2020, 76, 1638–1640; https://doi.org/10.1107/s2056989020012359.Search in Google Scholar PubMed PubMed Central
4. Bugaris, D. E., Smith, M. D., zur Loye, H.-C. Inorg. Chem. 2013, 52, 3836–3844; https://doi.org/10.1021/ic302439b.Search in Google Scholar PubMed
5. Chance, W. M., Bugaris, D. E., Sefat, A. S., zur Loye, H.-C. Inorg. Chem. 2013, 52, 11723–11733; https://doi.org/10.1021/ic400910g.Search in Google Scholar PubMed
6. Chance, W. M. Hydroflux Synthesis: A New and Effective Technique for Exploratory Crystal Growth. Ph.D. Thesis, University Of South Carolina, USA, 2014.Search in Google Scholar
7. Albrecht, R., Doert, T., Ruck, M. Z. Anorg. Allg. Chem. 2020, 646, 1517–1524; https://doi.org/10.1002/zaac.202000031.Search in Google Scholar
8. Albrecht, R., Doert, T., Ruck, M. Z. Anorg. Allg. Chem. 2020, 646, 1389–1395; https://doi.org/10.1002/zaac.202000065.Search in Google Scholar
9. Albrecht, R., Hunger, J., Block, T., Pöttgen, R., Senyshyn, A., Doert, T., Ruck, M. ChemistryOpen 2019, 8, 74–83; https://doi.org/10.1002/open.201800229.Search in Google Scholar PubMed PubMed Central
10. Albrecht, R., Hunger, J., Hölzel, M., Block, T., Pöttgen, R., Doert, T., Ruck, M. ChemistryOpen 2019, 8, 1399–1406; https://doi.org/10.1002/open.201900287.Search in Google Scholar PubMed PubMed Central
11. Albrecht, R., Hunger, J., Hölzel, M., Suard, E., Schnelle, W., Doert, T., Ruck, M. Eur. J. Inorg. Chem. 2021, 2021, 364–376; https://doi.org/10.1002/ejic.202000891.Search in Google Scholar
12. Peacor, D. R. Z. Kristallogr. – Cryst. Mater. 1973, 138, 274–298; https://doi.org/10.1524/zkri.1973.138.138.274.Search in Google Scholar
13. Heaney, P. J., Prewitt, C. T., Gibbs, G. V., Eds. Silica: Physical Behavior, Geochemistry, and Materials Applications, Reviews In Mineralogy & Geochemistry, Vol. 29; Mineralogical Society Of America: Washington, D.C, 1994.Search in Google Scholar
14. Wyckoff, R. W. G. Am. J. Sci. 1925, 9, 448–459; https://doi.org/10.2475/ajs.s5-9.54.448.Search in Google Scholar
15. O’Keeffe, M., Hyde, B. G. Acta Crystallogr. B 1976, 32, 2923–2936.10.1107/S0567740876009308Search in Google Scholar
16. Nieuwenkamp, W. Z. Kristallogr. 1935, 92, 82–88; https://doi.org/10.1524/zkri.1935.92.1.82.Search in Google Scholar
17. Downs, R. T., Palmer, D. C. Am. Mineral. 1994, 79, 9–14.Search in Google Scholar
18. Lee, S., Xu, H. Acta Crystallogr. B 2019, 75, 160–167; https://doi.org/10.1107/s2052520619000933.Search in Google Scholar PubMed
19. Ali, N. Z., Nuss, J., Sheptyakov, D., Jansen, M. J. Solid State Chem. 2010, 183, 752–759; https://doi.org/10.1016/j.jssc.2010.01.022.Search in Google Scholar
20. Sheptyakov, D., Ali, N. Z., Jansen, M. J. Phys. Condens. Matter 2010, 22, 426001; https://doi.org/10.1088/0953-8984/22/42/426001.Search in Google Scholar PubMed
21. Ali, N. Z. New Ternary Alkalioxometallates of the First-Row Transition-Metal Elements Through the Azide Nitrate Route. Ph.D. Thesis, Universität Stuttgart, Germany, 2011.Search in Google Scholar
22. Wondratschek, H., Müller, U. International Tables for Crystallography, Volume A1, Symmetry Relations Between Space Groups; Kluwer Academic Publishers: Dortrecht, Boston, London, 2004.Search in Google Scholar
23. Shannon, R. D., Prewitt, C. T. Acta Crystallogr. B 1969, 25, 925–946; https://doi.org/10.1107/s0567740869003220.Search in Google Scholar
24. Smith, J. V., Steele, I. M. Neues Jahrbuch Mineral. Monatsh. 1984, 147, 137–144.Search in Google Scholar
25. Schneider, H., Majdic, A. Neues Jahrbuch Mineral. Monatsh. 1984, 147, 559–568.Search in Google Scholar
26. Rager, H., Schneider, H. Am. Mineral. 1986, 71, 105–110.Search in Google Scholar
27. Bell, A. M. T., Henderson, C. M. B. Acta Crystallogr. C 1994, 50, 1531–1536; https://doi.org/10.1107/s0108270194004014.Search in Google Scholar
28. Palmer, D. C., Dove, M. T., Ibberson, R. M., Powell, B. M. Am. Mineral. 1997, 82, 16–29; https://doi.org/10.2138/am-1997-1-203.Search in Google Scholar
29. Hammond, R., Barbier, J. Acta Crystallogr. C 1999, 55, IUC9900075; https://doi.org/10.1107/s0108270199099242.Search in Google Scholar
30. Dollase, W. A., Ross, C. R. Am. Mineral. 1993, 78, 627–632.Search in Google Scholar
31. Grey, I. E., Hoskins, B. F., Madsen, I. C. J. Solid State Chem. 1990, 85, 202–219; https://doi.org/10.1016/s0022-4596(05)80077-5.Search in Google Scholar
32. APEX2; Bruker AXS Inc.: Madison, Wisconsin, USA, 2014.Search in Google Scholar
33. Sheldrick, G. M. Sadabs: Area-Detector Absorption Correction; Bruker AXS Inc.: Madison, Wisconsin, USA, 2014.Search in Google Scholar
34. Sheldrick, G. M. Acta Crystallogr. A 2015, 71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar
35. Sheldrick, G. M. Acta Crystallogr. C 2015, 71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar
36. Brandenburg, K. Diamond 3.2k, Crystal and Molecular Structure Visualization; Crystal Impact GbR: Bonn, Germany, 2014.Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/znb-2022-0016).
© 2022 Walter de Gruyter GmbH, Berlin/Boston