Skip to content
Licensed Unlicensed Requires Authentication Published online by De Gruyter March 21, 2022

An unusual member of the solid solution series between cristobalite and potassium ferrate(III) obtained from hydroflux

Ralf Albrecht and Michael Ruck

Abstract

Dark octahedral crystals of K1−x[Fe1−xSi x O2] with x ≈ 0.2 were synthesized under ultra-alkaline conditions in a KOH hydroflux at 200 °C. The compound is a member of the solid solution series between SiO2 and K[FeO2]. Due to its SiO2 content, K0.8[Fe0.8Si0.2O2] is much less sensitive to moisture than K[FeO2]. The crystal structure is a stuffed cristobalite with a charged framework of vertex-sharing [MO4/2] tetrahedra (M = Fe3+, Si4+) and potassium counter ions in the large voids of the framework. It has the pseudo-symmetry and metrics of the cubic space group F d 3 m , but adopts the tetragonal space group I41md with four formula units in the cell. Unlike other tectosilicates of this type, the [MO4/2] tetrahedra are not regular but distorted to disphenoids. The O atom can be modeled by a huge disk-shaped ellipsoid or, better, by split atom positions forming a six-membered ring with a diameter of 1.1 Å. The M–O distances range from 1.66(2) to 1.96(2) Å, the M–O–M angles are 135(2)°, 137(1)°, and 151(1)°.


Dedicated to Professor Martin Lerch on the Occasion of his 60th Birthday.



Corresponding author: Michael Ruck, Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, 01062 Dresden, Germany; and Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Straße 40, 01187 Dresden, Germany, E-mail:

Funding source: Deutsche Forschungsgemeinschaft

Award Identifier / Grant number: 438795198

Acknowledgment

We acknowledge technical support by M. Münch (TU Dresden).

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was financially supported by the Deutsche Forschungsgemeinschaft (project-id: 438795198).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Albrecht, R. Exploration of the Hydroflux Synthesis. Ph.D. Thesis, TU Dresden, Germany, 2021.Search in Google Scholar

2. Albrecht, R., Graßme, F., Doert, T., Ruck, M. Z. Naturforsch. B 2020, 75, 951–957; https://doi.org/10.1515/znb-2020-0147.Search in Google Scholar

3. Albrecht, R., Menning, H., Doert, T., Ruck, M. Acta Crystallogr. E 2020, 76, 1638–1640; https://doi.org/10.1107/s2056989020012359.Search in Google Scholar PubMed PubMed Central

4. Bugaris, D. E., Smith, M. D., zur Loye, H.-C. Inorg. Chem. 2013, 52, 3836–3844; https://doi.org/10.1021/ic302439b.Search in Google Scholar PubMed

5. Chance, W. M., Bugaris, D. E., Sefat, A. S., zur Loye, H.-C. Inorg. Chem. 2013, 52, 11723–11733; https://doi.org/10.1021/ic400910g.Search in Google Scholar PubMed

6. Chance, W. M. Hydroflux Synthesis: A New and Effective Technique for Exploratory Crystal Growth. Ph.D. Thesis, University Of South Carolina, USA, 2014.Search in Google Scholar

7. Albrecht, R., Doert, T., Ruck, M. Z. Anorg. Allg. Chem. 2020, 646, 1517–1524; https://doi.org/10.1002/zaac.202000031.Search in Google Scholar

8. Albrecht, R., Doert, T., Ruck, M. Z. Anorg. Allg. Chem. 2020, 646, 1389–1395; https://doi.org/10.1002/zaac.202000065.Search in Google Scholar

9. Albrecht, R., Hunger, J., Block, T., Pöttgen, R., Senyshyn, A., Doert, T., Ruck, M. ChemistryOpen 2019, 8, 74–83; https://doi.org/10.1002/open.201800229.Search in Google Scholar PubMed PubMed Central

10. Albrecht, R., Hunger, J., Hölzel, M., Block, T., Pöttgen, R., Doert, T., Ruck, M. ChemistryOpen 2019, 8, 1399–1406; https://doi.org/10.1002/open.201900287.Search in Google Scholar PubMed PubMed Central

11. Albrecht, R., Hunger, J., Hölzel, M., Suard, E., Schnelle, W., Doert, T., Ruck, M. Eur. J. Inorg. Chem. 2021, 2021, 364–376; https://doi.org/10.1002/ejic.202000891.Search in Google Scholar

12. Peacor, D. R. Z. Kristallogr. – Cryst. Mater. 1973, 138, 274–298; https://doi.org/10.1524/zkri.1973.138.138.274.Search in Google Scholar

13. Heaney, P. J., Prewitt, C. T., Gibbs, G. V., Eds. Silica: Physical Behavior, Geochemistry, and Materials Applications, Reviews In Mineralogy & Geochemistry, Vol. 29; Mineralogical Society Of America: Washington, D.C, 1994.Search in Google Scholar

14. Wyckoff, R. W. G. Am. J. Sci. 1925, 9, 448–459; https://doi.org/10.2475/ajs.s5-9.54.448.Search in Google Scholar

15. O’Keeffe, M., Hyde, B. G. Acta Crystallogr. B 1976, 32, 2923–2936.10.1107/S0567740876009308Search in Google Scholar

16. Nieuwenkamp, W. Z. Kristallogr. 1935, 92, 82–88; https://doi.org/10.1524/zkri.1935.92.1.82.Search in Google Scholar

17. Downs, R. T., Palmer, D. C. Am. Mineral. 1994, 79, 9–14.Search in Google Scholar

18. Lee, S., Xu, H. Acta Crystallogr. B 2019, 75, 160–167; https://doi.org/10.1107/s2052520619000933.Search in Google Scholar PubMed

19. Ali, N. Z., Nuss, J., Sheptyakov, D., Jansen, M. J. Solid State Chem. 2010, 183, 752–759; https://doi.org/10.1016/j.jssc.2010.01.022.Search in Google Scholar

20. Sheptyakov, D., Ali, N. Z., Jansen, M. J. Phys. Condens. Matter 2010, 22, 426001; https://doi.org/10.1088/0953-8984/22/42/426001.Search in Google Scholar PubMed

21. Ali, N. Z. New Ternary Alkalioxometallates of the First-Row Transition-Metal Elements Through the Azide Nitrate Route. Ph.D. Thesis, Universität Stuttgart, Germany, 2011.Search in Google Scholar

22. Wondratschek, H., Müller, U. International Tables for Crystallography, Volume A1, Symmetry Relations Between Space Groups; Kluwer Academic Publishers: Dortrecht, Boston, London, 2004.Search in Google Scholar

23. Shannon, R. D., Prewitt, C. T. Acta Crystallogr. B 1969, 25, 925–946; https://doi.org/10.1107/s0567740869003220.Search in Google Scholar

24. Smith, J. V., Steele, I. M. Neues Jahrbuch Mineral. Monatsh. 1984, 147, 137–144.Search in Google Scholar

25. Schneider, H., Majdic, A. Neues Jahrbuch Mineral. Monatsh. 1984, 147, 559–568.Search in Google Scholar

26. Rager, H., Schneider, H. Am. Mineral. 1986, 71, 105–110.Search in Google Scholar

27. Bell, A. M. T., Henderson, C. M. B. Acta Crystallogr. C 1994, 50, 1531–1536; https://doi.org/10.1107/s0108270194004014.Search in Google Scholar

28. Palmer, D. C., Dove, M. T., Ibberson, R. M., Powell, B. M. Am. Mineral. 1997, 82, 16–29; https://doi.org/10.2138/am-1997-1-203.Search in Google Scholar

29. Hammond, R., Barbier, J. Acta Crystallogr. C 1999, 55, IUC9900075; https://doi.org/10.1107/s0108270199099242.Search in Google Scholar

30. Dollase, W. A., Ross, C. R. Am. Mineral. 1993, 78, 627–632.Search in Google Scholar

31. Grey, I. E., Hoskins, B. F., Madsen, I. C. J. Solid State Chem. 1990, 85, 202–219; https://doi.org/10.1016/s0022-4596(05)80077-5.Search in Google Scholar

32. APEX2; Bruker AXS Inc.: Madison, Wisconsin, USA, 2014.Search in Google Scholar

33. Sheldrick, G. M. Sadabs: Area-Detector Absorption Correction; Bruker AXS Inc.: Madison, Wisconsin, USA, 2014.Search in Google Scholar

34. Sheldrick, G. M. Acta Crystallogr. A 2015, 71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

35. Sheldrick, G. M. Acta Crystallogr. C 2015, 71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

36. Brandenburg, K. Diamond 3.2k, Crystal and Molecular Structure Visualization; Crystal Impact GbR: Bonn, Germany, 2014.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/znb-2022-0016).


Received: 2022-02-24
Accepted: 2022-03-04
Published Online: 2022-03-21

© 2022 Walter de Gruyter GmbH, Berlin/Boston