Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 8, 2023

Eu4Al13Pt9 – a coloring variant of the Ho4Ir13Ge9 type structure

  • Stefan Engel , Nazar Zaremba , Yurii Prots , Rachid S. Touzani and Oliver Janka EMAIL logo

Abstract

Investigations in the ternary system Eu–Al–Pt led to the discovery of Eu4Al13Pt9, a new representative exhibiting a coloring variant of the Ho4Ir13Ge9 type structure. The orthorhombic structure was refined based on single crystal X-ray diffraction data (Pmmn, Wyckoff sequence e 9 b 3 a 5, a = 415.38(1), b = 1149.73(2), c = 1994.73(5) pm, wR2 = 0.0622, 1901 F 2 values, 88 variables) and full atomic ordering was observed for all atoms. The structure features a complex [Al13Pt9] δ network with the Eu atoms occupying hexagonal prismatic cavities. The bonding situation of this new platinide was investigated via quantum-chemical calculations. According to Density Functional Theory (DFT) the title compound has to be described as a polar intermetallic material with a covalently bonded [Al13Pt9] δ polyanion showing strong Pt–Al alongside weak Al–Al and Pt–Pt bonding and Eu cations in the cavities.


Dedicated to Professor Gerhard Müller on the occasion of his 70th birthday.



Corresponding author: Oliver Janka, Anorganische Festkörperchemie, Universität des Saarlandes, Campus C4.1, 66123 Saarbrücken, Germany, E-mail:

Funding source: Deutsche Forschungsgemeinschaft

Award Identifier / Grant number: JA 1891-10-1

Award Identifier / Grant number: INST 256/349-1

Award Identifier / Grant number: INST 256/506-1

Acknowledgements

We thank Ute Ch. Rodewald for the collection of the single crystal intensity data. Instrumentation and technical assistance for this work were also provided by the Service Center X-ray Diffraction, with financial support from Saarland University and German Science Foundation (project number INST 256/349-1 and INST 256/506-1). RT thanks the Universitätsrechenzentrum of the Otto von Guericke University for calculation power and time.

  1. Author contributions: All authors have accepted responsibility for the entire content of this submitted manuscript and approved the submission.

  2. Research funding: Funding is provided by the Deutsche Forschungsgemeinschaft DFG (JA 1891-10-1, INST 256/349-1 and INST 256/506-1).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Stegemann, F., Block, T., Klenner, S., Zhang, Y., Fokwa, B. P. T., Timmer, A., Mönig, H., Doerenkamp, C., Eckert, H., Janka, O. Chem. Eur J. 2019, 25, 10735–10747; https://doi.org/10.1002/chem.201901867.Search in Google Scholar PubMed

2. Klenner, S., Heletta, L., Pöttgen, R. Dalton Trans. 2019, 48, 3648–3657; https://doi.org/10.1039/c9dt00035f.Search in Google Scholar PubMed

3. Radzieowski, M., Stegemann, F., Block, T., Stahl, J., Johrendt, D., Janka, O. J. Am. Chem. Soc. 2018, 140, 8950–8957; https://doi.org/10.1021/jacs.8b05188.Search in Google Scholar PubMed

4. Heying, B., Kösters, J., Heletta, L., Klenner, S., Pöttgen, R. Monatsh. Chem. 2019, 150, 1163–1173; https://doi.org/10.1007/s00706-019-02412-8.Search in Google Scholar

5. De Vries, J. W. C., Thiel, R. C., Buschow, K. H. J. Phys. B+C 1984, 124, 291–298; https://doi.org/10.1016/0378-4363(84)90088-3.Search in Google Scholar

6. Harmening, T., Pöttgen, R. Z. Naturforsch. 2009, 65b, 90–94.10.1515/znb-2010-0116Search in Google Scholar

7. Seiro, S., Kummer, K., Vyalikh, D., Caroca-Canales, N., Geibel, C. Phys. Status Solidi 2013, 250, 621–625; https://doi.org/10.1002/pssb.201200892.Search in Google Scholar

8. Felner, I., Nowik, I. J. Phys. Chem. Solid. 1984, 45, 419–426; https://doi.org/10.1016/0022-3697(84)90149-5.Search in Google Scholar

9. Mayer, I., Felner, I. J. Phys. Chem. Solid. 1977, 38, 1031–1034; https://doi.org/10.1016/0022-3697(77)90206-2.Search in Google Scholar

10. Maślankiewicz, P., Szade, J. J. Alloys Compd. 2006, 423, 69–73; https://doi.org/10.1016/j.jallcom.2005.12.045.Search in Google Scholar

11. Mörsen, E., Mosel, B. D., Müller-Warmuth, W., Reehuis, M., Jeitschko, W. J. Phys. C Solid State Phys. 1988, 21, 3133–3140; https://doi.org/10.1088/0022-3719/21/16/023.Search in Google Scholar

12. Stegemann, F., Block, T., Klenner, S., Janka, O. Chem. Eur J. 2019, 25, 3505–3509; https://doi.org/10.1002/chem.201806297.Search in Google Scholar PubMed

13. Sampathkumaran, E. V., Gupta, L. C., Vijayaraghavan, R., Gopalakrishnan, K. V., Pillay, R. G., Devare, H. G. J. Phys. C Solid State Phys. 1981, 14, L237–L242.10.1088/0022-3719/14/9/006Search in Google Scholar

14. Menushenkov, A. P., Yaroslavtsev, A. A., Geondzhian, A. Y., Chernikov, R. V., Nataf, L., Tan, X., Shatruk, M. J. Supercond. Nov. Magnetism 2017, 30, 75–78; https://doi.org/10.1007/s10948-016-3771-0.Search in Google Scholar

15. Tan, X., Fabbris, G., Haskel, D., Yaroslavtsev, A. A., Cao, H., Thompson, C. M., Kovnir, K., Menushenkov, A. P., Chernikov, R. V., Garlea, V. O., Shatruk, M. J. Am. Chem. Soc. 2016, 138, 2724–2731; https://doi.org/10.1021/jacs.5b12659.Search in Google Scholar PubMed

16. Akihiro, M., Shigeki, M., Masafumi, U., Hirofumi, W., Kazuyuki, M., Yoshiya, U., Masaichiro, M., Naomi, K., Kiyofumi, N., Naohisa, H., Yasuo, O., Naoki, I. J. Phys.: Condens. Matter 2018, 30, 105603.Search in Google Scholar

17. Kumar, R. S., Svane, A., Vaitheeswaran, G., Kanchana, V., Bauer, E. D., Hu, M., Nicol, M. F., Cornelius, A. L. Phys. Rev. B 2008, 78, 075117; https://doi.org/10.1103/physrevb.78.075117.Search in Google Scholar

18. Stegemann, F., Stahl, J., Bartsch, M., Zacharias, H., Johrendt, D., Janka, O. Chem. Sci. 2019, 10, 11086–11094; https://doi.org/10.1039/c9sc04437j.Search in Google Scholar PubMed PubMed Central

19. Adroja, D. T., Rainford, B. D., de Teresa, J. M., del Moral, A., Ibarra, M. R., Knight, K. S. Phys. Rev. B 1995, 52, 12790–12797; https://doi.org/10.1103/physrevb.52.12790.Search in Google Scholar PubMed

20. Felner, I., Nowik, I. Phys. Rev. B 1986, 33, 617–619; https://doi.org/10.1103/physrevb.33.617.Search in Google Scholar PubMed

21. Felner, I., Nowik, I., Vaknin, D., Potzel, U., Moser, J., Kalvius, G. M., Wortmann, G., Schmiester, G., Hilscher, G., Gratz, E., Schmitzer, C., Pillmayr, N., Prasad, K. G., de Waard, H., Pinto, H. Phys. Rev. B 1987, 35, 6956–6963; https://doi.org/10.1103/physrevb.35.6956.Search in Google Scholar PubMed

22. Müller, H., Bauer, E., Gratz, E., Yoshimura, K., Nitta, T., Mekata, M. J. Magn. Magn Mater. 1988, 76, 159–160; https://doi.org/10.1016/0304-8853(88)90350-2.Search in Google Scholar

23. Villars, P., Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds; ASM International®: Materials Park, Ohio (USA), 2023.Search in Google Scholar

24. Pöttgen, R., Gulden, T., Simon, A. GIT Labor-Fachz. 1999, 43, 133–136.Search in Google Scholar

25. Pöttgen, R., Lang, A., Hoffmann, R.-D., Künnen, B., Kotzyba, G., Müllmann, R., Mosel, B. D., Rosenhahn, C. Z. Kristallogr. 1999, 214, 143–150.10.1524/zkri.1999.214.3.143Search in Google Scholar

26. X-Area (Version 1.70); Stoe & Cie GmbH, 2014.Search in Google Scholar

27. Palatinus, L., Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786–790; https://doi.org/10.1107/s0021889807029238.Search in Google Scholar

28. Petříček, V., Dušek, M., Palatinus, L. Jana2006. The Crystallographic Computing System; Institute of Physics: Praha (Czech Republic), 2006.Search in Google Scholar

29. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345–352; https://doi.org/10.1515/zkri-2014-1737.Search in Google Scholar

30. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A. P., Smogunov, A., Umari, P., Wentzcovitch, R. M. J. Phys. Condens. Matter 2009, 21, 395502; https://doi.org/10.1088/0953-8984/21/39/395502.Search in Google Scholar PubMed

31. Giannozzi, P., Andreussi, O., Brumme, T., Bunau, O., Buongiorno Nardelli, M., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Cococcioni, M., Colonna, N., Carnimeo, I., Dal Corso, A., de Gironcoli, S., Delugas, P., DiStasio, R. A., Ferretti, A., Floris, A., Fratesi, G., Fugallo, G., Gebauer, R., Gerstmann, U., Giustino, F., Gorni, T., Jia, J., Kawamura, M., Ko, H. Y., Kokalj, A., Küçükbenli, E., Lazzeri, M., Marsili, M., Marzari, N., Mauri, F., Nguyen, N. L., Nguyen, H. V., Otero-de-la-Roza, A., Paulatto, L., Poncé, S., Rocca, D., Sabatini, R., Santra, B., Schlipf, M., Seitsonen, A. P., Smogunov, A., Timrov, I., Thonhauser, T., Umari, P., Vast, N., Wu, X., Baroni, S. J. Phys. Condens. Matter 2017, 29, 465901; https://doi.org/10.1088/1361-648x/aa8f79.Search in Google Scholar PubMed

32. Blöchl, P. E. Phys. Rev. B 1994, 50, 17953–17979; https://doi.org/10.1103/physrevb.50.17953.Search in Google Scholar PubMed

33. Dal Corso, A. Comput. Mater. Sci. 2014, 95, 337–350; https://doi.org/10.1016/j.commatsci.2014.07.043.Search in Google Scholar

34. Topsakal, M., Wentzcovitch, R. M. Comput. Mater. Sci. 2014, 95, 263–270; https://doi.org/10.1016/j.commatsci.2014.07.030.Search in Google Scholar

35. Marzari, N., Vanderbilt, D., De Vita, A., Payne, M. C. Phys. Rev. Lett. 1999, 82, 3296–3299; https://doi.org/10.1103/physrevlett.82.3296.Search in Google Scholar

36. Monkhorst, H. J., Pack, J. D. Phys. Rev. B 1976, 13, 5188–5192; https://doi.org/10.1103/physrevb.13.5188.Search in Google Scholar

37. Perdew, J. P., Burke, K., Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865–3868; https://doi.org/10.1103/physrevlett.77.3865.Search in Google Scholar

38. Tang, W., Sanville, E., Henkelman, G. J. Phys. Condens. Matter 2009, 21, 084204; https://doi.org/10.1088/0953-8984/21/8/084204.Search in Google Scholar PubMed

39. Sanville, E., Kenny, S. D., Smith, R., Henkelman, G. J. Comput. Chem. 2007, 28, 899–908; https://doi.org/10.1002/jcc.20575.Search in Google Scholar PubMed

40. Henkelman, G., Arnaldsson, A., Jónsson, H. Comput. Mater. Sci. 2006, 36, 354–360; https://doi.org/10.1016/j.commatsci.2005.04.010.Search in Google Scholar

41. Yu, M., Trinkle, D. R. J. Chem. Phys. 2011, 134, 064111; https://doi.org/10.1063/1.3553716.Search in Google Scholar PubMed

42. Otero-de-la-Roza, A., Blanco, M. A., Pendás, A. M., Luaña, V. Comput. Phys. Commun. 2009, 180, 157–166; https://doi.org/10.1016/j.cpc.2008.07.018.Search in Google Scholar

43. Otero-de-la-Roza, A., Johnson, E. R., Luaña, V. Comput. Phys. Commun. 2014, 185, 1007–1018; https://doi.org/10.1016/j.cpc.2013.10.026.Search in Google Scholar

44. Andersen, O. K., Skriver, H., Nohl, H., Johansson, B. Pure Appl. Chem. 1980, 52, 93–118; https://doi.org/10.1351/pac198052010093.Search in Google Scholar

45. Andersen, O. K., Jepsen, O. Phys. Rev. Lett. 1984, 53, 2571–2574; https://doi.org/10.1103/physrevlett.53.2571.Search in Google Scholar

46. TB-LMTO-ASA, Jepsen, O., Andersen, O. K. Max-Planck-Institut für Festkörperforschung Stuttgart (Germany), 2000.Search in Google Scholar

47. Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J., Fiolhais, C. Phys. Rev. B 1992, 46, 6671–6687; https://doi.org/10.1103/physrevb.46.6671.Search in Google Scholar PubMed

48. Dronskowski, R., Blöchl, P. E. J. Phys. Chem. 1993, 97, 8617–8624; https://doi.org/10.1021/j100135a014.Search in Google Scholar

49. Zaremba, N., Pavlyuk, V., Stegemann, F., Hlukhyy, V., Engel, S., Klenner, S., Pöttgen, R., Janka, O. Monatsh. Chem. 2022; https://doi.org/10.1007/s00706-00022-03005-00708.Search in Google Scholar

50. Bhan, S., Kudielka, H. Int. J. Mater. Res. 1978, 69, 333–336; https://doi.org/10.1515/ijmr-1978-690510.Search in Google Scholar

51. Stegemann, F., Zhang, Y., Fokwa, B. P. T., Janka, O. Dalton Trans. 2020, 49, 6398–6406; https://doi.org/10.1039/d0dt00521e.Search in Google Scholar PubMed

52. Morozova, Y., Gribanov, A., Murashova, E., Dunaev, S., Grytsiv, A., Rogl, P., Giester, G., Kaczorowski, D. J. Alloys Compd. 2018, 767, 496–503; https://doi.org/10.1016/j.jallcom.2018.07.146.Search in Google Scholar

53. Sologub, O. L., Prots, Y. M., Salamakha, P. S., Pecharskii, V. K., Bodak, O. I. J. Alloys Compd. 1993, 202, 13–15.10.1016/0925-8388(93)90509-LSearch in Google Scholar

54. Engel, S., Bönnighausen, J., Stegemann, F., Touzani, R. S., Janka, O. Z. Naturforsch. 2022, 77b, 367–379; https://doi.org/10.1515/znb-2022-0012.Search in Google Scholar

55. Eustermann, F., Gausebeck, S., Dosche, C., Haensch, M., Wittstock, G., Janka, O. Crystals 2018, 8, 169; https://doi.org/10.3390/cryst8040169.Search in Google Scholar

56. Harris, I. R., Mansey, R. C., Raynor, G. V. J. Less-Common Met. 1965, 9, 270–280; https://doi.org/10.1016/0022-5088(65)90020-2.Search in Google Scholar

57. Krypyakevych, P. I., Zalutskii, I. I. Vopr. Teor. Primen. Redkozem. Met., Mater. Soveshch. 1964, 144–145.Search in Google Scholar

58. Elliott, R. P. Proc. Conf. Rare Earth Res., 4th, Phoenix, 1965; pp. 215–245.Search in Google Scholar

59. Emsley, J. The Elements; Clarendon Press, Oxford University Press: Oxford, New York, 1998.Search in Google Scholar

60. Wiberg, N., Blank, T., Kaim, W., Schwederski, B., Linti, G. Eur. J. Inorg. Chem. 2000, 2000, 1475–1481; https://doi.org/10.1002/1099-0682(200007)2000:7<1475::aid-ejic1475>3.0.co;2-n.10.1002/1099-0682(200007)2000:7<1475::AID-EJIC1475>3.0.CO;2-NSearch in Google Scholar

61. Wright, R. J., Brynda, M., Power, P. P. Angew. Chem. Int. Ed. 2006, 45, 5953–5956; https://doi.org/10.1002/anie.200601925.Search in Google Scholar

62. Eustermann, F., Stegemann, F., Renner, K., Janka, O. Z. Anorg. Allg. Chem. 2017, 643, 1836–1843; https://doi.org/10.1002/zaac.201700090.Search in Google Scholar

63. Nickolaus, J., Imbrich, D. A., Schlindwein, S. H., Geyer, A. H., Nieger, M., Gudat, D. Inorg. Chem. 2017, 56, 3071–3080; https://doi.org/10.1021/acs.inorgchem.7b00022.Search in Google Scholar

64. Tanaka, K., Kamono, M., Tanabe, M., Osakada, K. Organometallics 2015, 34, 2985–2990; https://doi.org/10.1021/acs.organomet.5b00291.Search in Google Scholar

65. Hull, A. W. Trans. Am. Inst. Electro. Eng. 1919, 38, 1445–1466.10.1109/T-AIEE.1919.4765642Search in Google Scholar

66. Hull, A. W. Phys. Rev. 1917, 10, 661–696; https://doi.org/10.1103/physrev.10.661.Search in Google Scholar

67. Schubert, K., Burkhardt, W., Esslinger, P., Günzel, E., Meissner, H. G., Schütt, W., Wegst, J., Wilkens, M. Naturwissenschaften 1956, 43, 248–249; https://doi.org/10.1007/bf00617585.Search in Google Scholar

68. Zintl, E., Harder, A., Haucke, W. Z. Phys. Chem. B 1937, 35, 354–362; https://doi.org/10.1515/zpch-1937-3528.Search in Google Scholar

69. Pearson, R. G. Inorg. Chem. 1988, 27, 734–740; https://doi.org/10.1021/ic00277a030.Search in Google Scholar

70. Gießelmann, E., Touzani, R. S., Morgenstern, B., Janka, O. Z. Naturforsch. 2021, 76b, 659–668.10.1515/znb-2021-0105Search in Google Scholar

Received: 2023-01-06
Accepted: 2023-01-09
Published Online: 2023-03-08
Published in Print: 2023-03-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.3.2024 from https://www.degruyter.com/document/doi/10.1515/znb-2023-0300/html
Scroll to top button