Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 26, 2016

Antinociceptive activity of Tibouchina pereirae, an endemic plant from the Brazilian semiarid region

  • Êuder Reis Dias , Thays de Lima Matos Freire Dias , Magna Suzana Alexandre-Moreira and Alexsandro Branco EMAIL logo

Abstract

The anti-nociceptive activity of an extract of Tibouchina pereirae Aubl (AETP) was investigated using two models of chemically induced pain, viz. the acetic acid-induced writhing and the formalin test, respectively, with dipyrone and indomethacin as reference drugs, respectively. In the acetic acid-induced writhing test, AETP application (100 mg/kg) caused a significant reduction of writhing produced by acetic acid. In the formalin test, AETP reduced the formalin effects significantly only in the late phase. These findings thus indicate the involvement of AETP only in peripheral antinociceptive mechanisms. In addition, AETP exhibited good antioxidant activity (EC50 approx. 15 μg/mL) in the DPPH free radical scavenging assay.

Acknowledgments

The authors are grateful to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the grants and a fellowship. The authors would also like to thank the Programa de Pós-Graduação em Recursos Genéticos Vegetais da Universidade Estadual de Feira de Santana and Rede Nordeste de Biotecnologia – RENORBIO, Alagoas.

References

1. Goldenberg R, Baumgratz JF, Souza ML. Taxonomy of Melastomataceae in Brazil: retrospective and perspective views, and an identification key for the genera. Rodriguésia 2012;63:145–61.10.1590/S2175-78602012000100011Search in Google Scholar

2. Jiménez N, Carrillo-Hormaza L, Pujol A, Álzate F, Osorio E, Lara-Guzman O. Antioxidant capacity and phenolic content of commonly used anti-inflammatory medicinal plants in Colombia. Ind Crops Prod 2015;70:272–9.10.1016/j.indcrop.2015.03.050Search in Google Scholar

3. Zampieri MC, Sarkis JE, Pestana RC, Tavares AR, Melo-de-Pinna GF. Characterization of Tibouchina granulose (Desr.) Cong. (Melastomataceae) as a biomonitor of air pollution and quantification of particulate matter adsorbed by leaves. Ecol Chem Eng A 2013;61:316–27.10.1016/j.ecoleng.2013.09.050Search in Google Scholar

4. Klumpp G, Furlan CM, Domingos M, Klumpp A. Response of stress indicators and growth parameters of Tibouchina pulchra Cogn. exposed to air and soil pollution near the industrial complex of Cubatão, Brazil. Sci Total Environ 2000;246:79–91.10.1016/S0048-9697(99)00453-2Search in Google Scholar

5. Furlan CM, Salatino A, Domingos M. Influence of air pollution on leaf chemistry, herbivore feeding and gall frequency on Tibouchina pulchra leaves in Cubatão (Brazil). Biochem Syst Ecol 2004;32:256–63.10.1016/S0305-1978(03)00176-5Search in Google Scholar

6. Furlan CM, Moraes RM, Bulbovas P, Sanz MJ, Domingos M, Salatino A. Tibouchina pulchra (Cham.) Cogn., a native Atlantic Forest species, as a bio-indicator of ozone: visible injury. Environ Pollut 2008;152:361–5.10.1016/j.envpol.2007.06.042Search in Google Scholar PubMed

7. Janna OA, Khairul AK, Maziah M. Anthocyanin stability studies in Tibouchina semidecandra L. Food Chem 2007;101:1640–6.10.1016/j.foodchem.2006.04.034Search in Google Scholar

8. Yoshida T, Ito H, Isaza H. Pentameric ellagitannin oligomers in melastomataceous plants – chemotaxonomic significance. Phytochemistry 2005;66:1972–83.10.1016/j.phytochem.2005.01.006Search in Google Scholar PubMed

9. Motta KB, Kraus JE, Salatino A, Salatino MF. Distribution of metabolites in galled and non-galled foliar tissues of Tibouchina pulchra. Biochem Syst Ecol 2005;33:971–81.10.1016/j.bse.2005.02.004Search in Google Scholar

10. Kuster RM, Arnold N, Wessjohann L. Anti-fungal flavonoids from Tibouchina grandifolia. Biochem Syst Ecol 2009;37:63–5.10.1016/j.bse.2009.01.005Search in Google Scholar

11. Funch LS, Harley R, Funch R, Giulietti AM, Melo E. Chapada Diamantina: Useful Plants. São Carlos, Brazil: RiMA, 2004.Search in Google Scholar

12. Zimmermann M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain 1983;16:109–10.10.1016/0304-3959(83)90201-4Search in Google Scholar

13. Queiroz AC, Lira DP, Freire ML, Souza ET, Matta CB, Aquino AB, et al. The antinociceptive and anti-inflammatory activities of Piptadenia stipulacea Benth. (Fabaceae). J Ethnopharmacol 2010;128:377–83.10.1016/j.jep.2010.01.041Search in Google Scholar

14. Sá PG, Guimarães AL, Oliveira AP, Siqueira Filho JA, Fontana AP, Damasceno PK. Total phenolics, total flavonoids and antioxidant activity of Selaginella convoluta (Arn.) Spring (Selaginellaceae). J Basic Appl Pharmaceut Sci 2012;33:561–6.Search in Google Scholar

15. Saha S, Subreahmanyam EV, Kodangala C, Mandaland SC, Shastry SC. Evaluation of antinociceptive and anti-inflammatory activities of extract and fractions of Eugenia jambolana root bark and isolation of phytoconstituents. Braz J Pharmacogn 2013;23:651–61.10.1590/S0102-695X2013005000055Search in Google Scholar

16. Le Bars D, Gozariu M, Cadden SW. Animal models of nociception. Pharmacol Rev 2001;53:597–652.Search in Google Scholar

17. Imam MZ, Nahar N, Akter S, Rana MD. Antinociceptive activity of methanol extract of flowers of Impatiens balsamina. J Ethnopharmacol 2012;142:804–10.10.1016/j.jep.2012.06.004Search in Google Scholar

18. Loganayaki N, Siddhuraju P, Manian S. Antioxidant, anti-inflammatory and anti-nociceptive effects of Ammannia baccifera L. (Lythracceae), a folklore medicinal plant. J Ethnopharmacol 2012;140:230–3.10.1016/j.jep.2012.01.001Search in Google Scholar

19. Duarte JD, Nakamura M, Ferreira SH. Participation of the sympathetic system in acetic acid induced writhing in mice. Braz J Med Biol Res 1988;21:341–3.Search in Google Scholar

20. Soobrattee MA, Neergheen VS, Luximon-Ramma A, Arouma OI, Bahorun T. Phenolics as potential antioxidant therapeutic agents: mechanism and actions. Mutat Res 2005;579:200–13.10.1016/j.mrfmmm.2005.03.023Search in Google Scholar

21. Bellik Y, Boukraâ L, Alzahrani HA, Bakhotmah BA, Abdellah F, Hammoudi SM, et al. Molecular mechanism underlying anti-inflammatory and anti-allergic activities of phytochemicals: an update. Molecules 2013;18:322–53.10.3390/molecules18010322Search in Google Scholar

22. Weithmann KU, Alpermann HG. Biochemical and pharmacological effects of dipyrone and its metabolites in model systems related to arachidonic acid cascade. Arzneimittelforschung 1985;35:947–52.Search in Google Scholar

23. Abbate R, Gori AM, Pinto S, Attanasio M, Paniccia R, Coppo M, et al. Cyclooxygenase and lipoxygenase metabolite synthesis by polymorphonuclear neutrophils: in vitro effect of dipyrone. Prostaglandins Leukot Essent Fatty Acids 1990;41:89–93.10.1016/0952-3278(90)90059-TSearch in Google Scholar

24. Mcnamara CR, Mandel-Brehm J, Bautista DM, Siemens J, Deranian KL, Zhao M, et al. TRPA1 mediates formalin-induced pain. Proc Natl Acad Sci USA 2007;104:13525–30.10.1073/pnas.0705924104Search in Google Scholar PubMed PubMed Central

25. Maleki-Dizaju N, Fathiazad F, Garjani A. Antinociceptive properties of extracts and two flavonoids Isolated from leaves of Danae racemosa. Arch Pharm Res 2007;30:1536–42.10.1007/BF02977322Search in Google Scholar PubMed

26. Hunskaar S, Hole K. The formalin test in mice: dissociation between inflammatory and non-inflammatory pain. Pain 1987;30:103–14.10.1016/0304-3959(87)90088-1Search in Google Scholar

27. Tegeder I, Niederberger E, Vetter G, Braèutigam L, Geisslinger G. Effects of selective COX-1 and -2 inhibition on formalin-evoked nociceptive behavior and prostaglandin E2 release in the spinal cord. J Neurochem 2001;79:777–86.10.1046/j.1471-4159.2001.00613.xSearch in Google Scholar PubMed

28. Santos AR, Vedana EM, Freitas GA. Antinociceptive effect of meloxicam, in neurogenic and inflammatory nociceptive models in mice. Inflamm Res 1998;47:302–7.10.1007/s000110050333Search in Google Scholar PubMed

29. Zielińska M, Kostrzewa A, Ignatowicz E, Budzianowski J. The flavonoids quercetin and isorhamnetin 3-O-acylglucosides diminish neutrophil oxidative metabolism and lipid peroxidation. Acta Biochim Pol 2001;48:183–9.10.18388/abp.2001_5125Search in Google Scholar

30. Granados-Soto V, Alonso-López R, Asomosa-Espinosa R, Rufino MO, Gomes-Lopes LD, Ferreira SH. Participation of COX, IL-1β β and TNFα α in formalin-induced inflammatory pain. Proc West Pharmacol Soc 2001;44:15–7.Search in Google Scholar

31. Mohanty SK, Swamy MK, Middha SK, Prakash L, Subbanarashiman B, Maniyam A. Analgesic, anti-inflammatory, anti-lipoxygenase activity and characterization of three bioactive compounds in the most active fraction of Leptadenia reticulata (Retz.) Wight & Arn. – A valuable medicinal plant. Iran J Pharm Res 2015;14:933–42.Search in Google Scholar

Received: 2015-6-26
Revised: 2016-5-11
Accepted: 2016-6-29
Published Online: 2016-7-26
Published in Print: 2016-7-1

©2016 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.1515/znc-2015-0155/html
Scroll to top button