Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 6, 2016

Ascidian bioresources: common and variant chemical compositions and exploitation strategy – examples of Halocynthia roretzi, Styela plicata, Ascidia sp. and Ciona intestinalis

  • Yadong Zhao and Jiebing Li EMAIL logo

Abstract

To explore abundant marine ascidian bioresources, four species from two orders have been compared in their chemical compositions. After a universal separation of the animal body into two fractions, all tunics have been found rich in carbohydrate contents, while all inner body tissues are richer in proteins. Cellulose is present almost exclusively in the tunics and more in the order Stolidobranchia, while more sulfated polysaccharides are present in Phlebobranchia species. Almost all proteins are collagens with a high essential amino acid index and high delicious amino acid (DAA) content. All fractions also have high contents of good-quality fatty acids and trace minerals but low toxic element contents, with different sterols and glycosaminoglycans. There are species-specific characteristics observed for vanadium accumulation and sterol structures which are also meaningful for ascidian chemotaxonomy and resource exploitation. It is suggested that in addition to the present utilizations of tunics for cellulose production and of some species’ inner body tissues as human food, one should explore all species’ inner body tissues as human foods and all tunics as food or animal feed with the contained cellulose as dietary fiber. Collagens, sulfated polysaccharides, glycosaminoglycans, sterols and trace elements could be explored as byproducts for, e.g. pharmaceutical and chemical industries.


Corresponding author: Jiebing Li, Department of Fibre and Polymer Technology, Royal Institute of Technology, KTH, Teknikringen 56-58, SE-10044 Stockholm, Sweden, Phone: +4687908084

Acknowledgments:

China Scholarship Council (CSC) and KTH are acknowledged for supporting Y. Zhao’s PhD study at KTH. J-M. Bouquet, T. Magnesen, E. M. Thompson and C. Troedsson from Bergen Norway are thanked for their help in sampling ascidian animals of CI and AS.

References

1. Shenkar N, Swalla BJ. Global diversity of ascidiacea. PLoS One 2011;6:e20657.10.1371/journal.pone.0020657Search in Google Scholar

2. Tyrrell MC, Byers JE. Do artificial substrates favor nonindigenous fouling species over native species? J Exp Mar Biol Ecol 2007;342:54–60.10.1016/j.jembe.2006.10.014Search in Google Scholar

3. Switzer SE, Therriault TW, Dunham A, Pearce CM. Assessing potential control options for the invasive tunicate Didemnum vexillum in shellfish aquaculture. Aquaculture 2011;318:145–53.10.1016/j.aquaculture.2011.04.044Search in Google Scholar

4. Jiselle AB, Paetzold SC, Pedro AQ, Jeff D. The use of food grade oil in the prevention of vase tunicate fouling on mussel aquaculture gear. Manag Biol Invasion 2011;2:15–25.10.3391/mbi.2011.2.1.02Search in Google Scholar

5. Berrill NJ. The Tunicata with an account of the British species. London: Ray Society, 1950.Search in Google Scholar

6. Zhao Y, Li J. Excellent chemical and material cellulose from tunicates: diversity in cellulose production yield and chemical and morphological structures from different tunicate species. Cellulose 2014;21:3427–41.10.1007/s10570-014-0348-6Search in Google Scholar

7. Smith MJ, Dehnel PA. The composition of tunic from four species of ascidians. Comp Biochem Physiol B Comp Biochem 1971;40:615–22.10.1016/0305-0491(71)90136-2Search in Google Scholar

8. Zhao Y, Zhang Y, Lindström ME, Li J. Tunicate cellulose nanocrystals: preparation, neat films and nanocomposite films with glucomannans. Carbohydr Polym 2015;117:286–96.10.1016/j.carbpol.2014.09.020Search in Google Scholar PubMed

9. Petersen JK. Ascidian suspension feeding. J Exp Mar Biol Ecol 2007;342:127–37.10.1016/j.jembe.2006.10.023Search in Google Scholar

10. Troedsson C, Thompson E, Bouquet J-M, Magnesen T, Schander C, Li J. Tunicate extract for use in animal feeds. 2013: WO2013088177 A1.Search in Google Scholar

11. Oh K-S, Kim J-S, Heu M-S. Food constituents of edible ascidians Halocynthia roretzi and Pyura michaelseni. Korean J Food Sci Technol 1997;29:955–62.Search in Google Scholar

12. Wang C. Chemical constituents of the tunicate Styela plicata from the Dayawan Bay. Chinese J Anal Chem 2001;29:1311–4.Search in Google Scholar

13. Park CK, Matsui T, Watanabe K, Yamaguchi K, Konosu S. Extractive nitrogenous constituents of two species of edible ascidians Styela clava and S. plicata. Nippon Suisan Gakk 1991;57:169–74.10.2331/suisan.57.169Search in Google Scholar

14. Koukouras A, Voultsiadou-Koukoura E, Kevrekidis T, Vafidis D. Ascidian fauna of the Aegean Sea with a check list of the eastern Mediterranean and Black Sea species. Ann Inst Oceanogr 1995;71:19–34.Search in Google Scholar

15. Izquierdo-Muñoz A, Ramos-Esplá AA, Díaz-Valdés M. Recent non-indigenous ascidians in the Mediterranean Sea. Biol Invasions 2009;4:59–64.10.3391/ai.2009.4.1.5Search in Google Scholar

16. Maragliano GA, Sebastion C. Chemical analysis of edible ascidians. Chimica 1959;35:199–200.Search in Google Scholar

17. Vafidis D, Antoniadou C, Chintiroglou C. Population dynamics, allometric relationships and reproductive status of Microcosmus sabatieri (Tunicata: Ascidiacea) in the Aegean Sea. J Mar Biol Assoc UK 2008;88:1043–51.10.1017/S0025315408001811Search in Google Scholar

18. Karney R, Rhee W, Lambert G, Carman MR. Wild and cultured edible tunicates: a review, in Intl Invasive Sea Squirt Conference 5, Carman M, Editor 2014: Woods Hole, MA, USA.Search in Google Scholar

19. Troedsson C, Thompson E, Schander C, Bouquet J-M, Magnesen T, Li J. Method for producing a biofuel. 2012: WO2011158215 A3.Search in Google Scholar

20. Faulkner DJ. Marine natural products. Nat Prod Rep 1995;12:223–69.10.1039/np9951200223Search in Google Scholar

21. Watters DJ, Van Den Brenk AL. Toxins from ascidians. Toxicon 1993;31:1349–72.10.1016/0041-0101(93)90202-TSearch in Google Scholar

22. Ito M, Yokoi K, Inoue T, Asano S, Hatano R, Shinohara R, et al. Sphingomyelins in four ascidians, Ciona intestinalis, Halocynthia roretzi, Halocynthia aurantium, and Styela clava. J Oleo Sci 2009;58:473–80.10.5650/jos.58.473Search in Google Scholar PubMed

23. Cai M, Sugumaran M, Robinson WE. The crosslinking and antimicrobial properties of tunichrome. Comp Biochem Physiol B Biochem Mol Biol 2008;151:110–7.10.1016/j.cbpb.2008.06.004Search in Google Scholar PubMed

24. Donia MS, Wang B, Dunbar DC, Desai PV, Patny A, Avery M, et al. Mollamides B and C, Cyclic hexapeptides from the indonesian tunicate Didemnum molle. J Nat Prod 2008;71:941–5.10.1021/np700718pSearch in Google Scholar PubMed PubMed Central

25. Jumeri, Kim S. Antioxidant and anticancer activities of enzymatic hydrolysates of solitary tunicate (Styela clava). Food Sci Biotechnol 2011;20:1075–85.10.1007/s10068-011-0146-ySearch in Google Scholar

26. Franco LH, Joffe EB, Puricelli L, Tatian M, Seldes AM, Palermo JA. Indole alkaloids from the tunicate Aplidium meridianum. J Nat Prod 1998;61:1130–2.10.1021/np970493uSearch in Google Scholar PubMed

27. Rashid MA, Gustafson KR, Boyd MR. New cytotoxic N-methylated beta-carboline alkaloids from the marine ascidian Eudistoma gilboverde. J Nat Prod 2001;64:1454–6.10.1021/np010214+Search in Google Scholar PubMed

28. Pavão MS, Aiello KR, Werneck CC, Silva LC, Valente AP, Mulloy B, et al. Highly sulfated dermatan sulfates from Ascidians. Structure versus anticoagulant activity of these glycosaminoglycans. J Biol Chem 1998;273:27848–57.10.1074/jbc.273.43.27848Search in Google Scholar PubMed

29. Gandra M, Cavalcante M, Pavao M. Anticoagulant sulfated glycosaminoglycans in the tissues of the primitive chordate Styela plicata (Tunicata). Glycobiology 2000;10:1333–40.10.1093/glycob/10.12.1333Search in Google Scholar

30. Han X, Holtzman DM, McKeel DW Jr. Plasmalogen deficiency in early Alzheimer’s disease subjects and in animal models: molecular characterization using electrospray ionization mass spectrometry. J Neurochem 2001;77:1168–80.10.1046/j.1471-4159.2001.00332.xSearch in Google Scholar

31. Dagorn F, Dumay J, Wielgosz-Collin G, Rabesaotra V, Viau M, Monniot C, et al. Phospholipid distribution and phospholipid fatty acids of the tropical tunicates Eudistoma sp. and Leptoclinides uniorbis. Lipids 2010;45:253–61.10.1007/s11745-010-3389-0Search in Google Scholar

32. Cihangir H, Munoz AI, Papadopoulou MA, Espla AA, Yilmaz EC. Microcosmus polymorphus Heller, 1877 (Tunicata: Ascidiacea: Pyuridae)-a new addition to the Fauna of the Turkish Coasts. Turk J Fish Quat Sci 2011;11:157–9.Search in Google Scholar

33. FAO/WHO, Energy and protein requirements, in Report of FAO Nutritional Meeting Series No 52FAO1973: Rome, Italy.Search in Google Scholar

34. Riemer T, Nimptsch A, Nimptsch K, Schiller J. Determination of the glycosaminoglycan and collagen contents in tissue samples by high-resolution 1H NMR spectroscopy after DCl-induced hydrolysis. Biomacromolecules 2012;13:2110–7.10.1021/bm300485jSearch in Google Scholar

35. Einbu A, Varum KM. Characterization of chitin and its hydrolysis to GlcNAc and GlcN. Biomacromolecules 2008;9:1870–5.10.1021/bm8001123Search in Google Scholar

36. Einbu A, Varum KM. Depolymerization and de-N-acetylation of chitin oligomers in hydrochloric acid. Biomacromolecules 2007;8:309–14.10.1021/bm0608535Search in Google Scholar

37. Burighel P, Cloney R. Urochordata: ascidiacea. In: Harrison F, Ruppert E, editors. Microscopic analysis of invertebrates. NY: Wiley-Liss, Vol. 15, 1997:221–347.Search in Google Scholar

38. Robbins IJ. Ascidian growth and survival at high inorganic particulate concentrations. Marine Poll Bull 1985;16:365–7.10.1016/0025-326X(85)90089-XSearch in Google Scholar

39. Nakashima K, Sugiyama J, Satoh N. A spectroscopic assessment of cellulose and the molecular mechanisms of cellulose biosynthesis in the ascidian Ciona intestinalis. Mar Genomics 2008;1:9–14.10.1016/j.margen.2008.01.001Search in Google Scholar

40. Sun XF, Sun RC, Su Y, Sun JX. Comparative study of crude and purified cellulose from wheat straw. J Agr Food Chem 2004;52:839–47.10.1021/jf0349230Search in Google Scholar

41. Mohamed SF, Agil FA. Antiviral sulphated polysaccharide from brown algae Padina pavonia characterization and structure elucidation. Int J ChemTech Res 2013;5:1469–76.Search in Google Scholar

42. Albano RM, Mourão PA. Isolation, fractionation, and preliminary characterization of a novel class of sulfated glycans from the tunic of Styela plicata (Chordata Tunicata). J Biol Chem 1986;261:758–65.10.1016/S0021-9258(17)36159-8Search in Google Scholar

43. Pancake SJ, Karnovsky ML. The isolation and characterization of a mucopolysaccharide secreted by the snail, Otella lactea. J Biol Chem 1971;246:253.10.1016/S0021-9258(18)62557-8Search in Google Scholar

44. Smith MJ. The blood cells and tunic of the ascidian Halocynthia aurantium (Pallas). I. Hematology, tunic morphology, and partition of cells between blood and tunic. Biol Bull 1970;138:354–78.10.2307/1540219Search in Google Scholar

45. Deck JD, Hay ED, Revel J-P. Fine structure and origin of the tunic of Perophora viridis. J Morphol 1966;120:267–80.10.1002/jmor.1051200304Search in Google Scholar

46. Kimura S, Ohshima C, Hirose E, Nishikawa J, Itoh T. Cellulose in the house of the appendicularian Oikopleura rufescens. Protoplasma 2001;216:71–4.10.1007/BF02680133Search in Google Scholar

47. Hirose E, Lambert G, Kusakabe T, Nishikawa T. Tunic cuticular protrusions in ascidians (Chordata, Tunicata): a perspective of their character-state distribution. Zoolog Sci 1997;14:683–9.10.2108/zsj.14.683Search in Google Scholar

48. Van Daele Y, Revol J-F, Gaill F, Goffinet G. Characterization and supramolecular architecture of the cellulose-protein fibrils in the tunic of the sea peach (Halocynthia papillosa, Ascidiacea, Urochordata). Biol Cell 1992;76:87–96.10.1016/0248-4900(92)90198-ASearch in Google Scholar

49. Hirose E, Yamashiro H, Mori Y. Properties of tunic acid in the ascidian Phallusia nigra (Ascidiidae, Phlebobranchia) (Physiology). Zoolog Sci 2001;18:309–14.10.2108/zsj.18.309Search in Google Scholar

50. Hirose E. Ascidian tunic cells: morphology and functional diversity of free cells outside the epidermis. Invertebr Biol 2009;128:83–96.10.1111/j.1744-7410.2008.00153.xSearch in Google Scholar

51. Neuman RE, Logan MA. The determination of hydroxyproline. J Biol Chem 1950;184:299–306.10.1016/S0021-9258(19)51149-8Search in Google Scholar

52. Lodish HF. Molecular cell biology. NY: W. H. Freeman, 2000.Search in Google Scholar

53. Nair SV, Pearce S, Green PL, Mahajan D, Newton RA, Raftos DA. A collectin-like protein from tunicates. Comp Biochem Physiol Part B Biochem Mol Biol 2000;125:279–89.10.1016/S0305-0491(99)00180-7Search in Google Scholar

54. Lee K-H, Choi B-D, Hong B-I, Jung B-C, Ruck J-H, Jung W-J. Functional properties of sulfated polysaccharides in ascidian (Halocynthia roretzi) tunic. J Korean Fish Soc 1998;31:447–51.Search in Google Scholar

55. Millar RH. Ciona. Liverpool: University Press, 1953.Search in Google Scholar

56. Pavão MS. Ascidian (Chordata-Tunicata) glycosaminoglycans: extraction, purification, biochemical, and spectroscopic analysis. Methods Mol Biol 2015;1229:79.10.1007/978-1-4939-1714-3_9Search in Google Scholar

57. Pavão MS. Glycosaminoglycans analogs from marine invertebrates: structure, biological effects, and potential as new therapeutics. Front Cell Infect Microbiol 2014;4:123.10.3389/fcimb.2014.00123Search in Google Scholar

58. Cavalcante MC, Allodi S, Valente A-P, Straus AH, Takahashi HK, Mourão PA, et al. Occurrence of heparin in the invertebrate Styela plicata (Tunicata) is restricted to cell layers facing the outside environment: an ancient role in defense? J Biol Chem 2000;275:36189–96.10.1074/jbc.M005830200Search in Google Scholar

59. Pavão MS, Mourão PA, Mulloy B, Tollefsen DM. A unique dermatan sulfate-like glycosaminoglycan from ascidian: its structure and the effect of its unusual sulfation pattern on anticoagulant activity. J Biol Chem 1995;270:31027–36.10.1074/jbc.270.52.31027Search in Google Scholar

60. Pavão MS, Rodrigues MA, Mourão PA. Acidic polysaccharides of the ascidian Styela plicata. Biosynthetic studies on the sulfated L-galactans of the tunic, and preliminary characterization of a dermatan sulfate-like polymer in body tissues. Biochim Biophys Acta (BBA)-Gen Subj 1994;1199:229–37.10.1016/0304-4165(94)90001-9Search in Google Scholar

61. Mourão PA, Perlin AS. Structural features of sulfated glycans from the tunic of Styela plicata (Chordata-Tunicata). Eur J Biochem 1987;166:431–6.10.1111/j.1432-1033.1987.tb13534.xSearch in Google Scholar

62. Tincu JA, Menzel LP, Azimov R, Sands J, Hong T, Waring AJ, et al. Plicatamide, an antimicrobial octapeptide from Styela plicata hemocytes. J Biol Chem 2003;278:13546–53.10.1074/jbc.M211332200Search in Google Scholar

63. Ko S-C, Kang M, Lee J-K, Byun H-G, Kim S-K, Lee S-C, et al. Effect of angiotensin I-converting enzyme (ACE) inhibitory peptide purified from enzymatic hydrolysates of Styela plicata. Eur Food Res Technol 2011;233:915–22.10.1007/s00217-011-1585-7Search in Google Scholar

64. Kozlowski E, Lima P, Vicente C, Lotufo T, Bao X, Sugahara K, et al. Dermatan sulfate in tunicate phylogeny: order-specific sulfation pattern and the effect of [→4IdoA(2-Sulfate)β-1→3GalNAc(4-Sulfate)β-1→] motifs in dermatan sulfate on heparin cofactor II activity. BMC Biochem 2011;12:1–9.10.1186/1471-2091-12-29Search in Google Scholar

65. Ballantine JA, Lavis A, Roberts JC, Morris RJ. Marine sterols. V. sterols of some tunicata. The occurrence of saturated ring sterols in these filter-feeding organisms. J Exp Mar Biol Ecol 1977;30:29–44.10.1016/0022-0981(77)90025-9Search in Google Scholar

66. Voogt PA, Van Rheenen JW. On the sterols of some ascidians. Arch Physiol Biochem 1975;83:563–72.10.3109/13813457509071400Search in Google Scholar

67. Nomura T, Itoh M, Viala J, Alcaide A, Barbier M. Analyse des sterols du Tunicier Halocynthia roretzi Isolement de sterols a 26 atomes de carbone. Nippon Suisan Gakk 1972;38:1365–71.10.2331/suisan.38.1365Search in Google Scholar

68. Yasuda S. Sterol compositions of sea squirts (Ascidiacea). Comp Biochem Physiol Part B Biochem Mol Biol 1975;50:399–402.10.1016/0305-0491(75)90248-5Search in Google Scholar

69. Stoilov I, Popov S, Marekov N, Andreev S. Anatomical distribution of sterols in some filter feeding invertebrates. Comp Biochem Physiol Part B Biochem Mol Biol 1984;79:225–8.10.1016/0305-0491(84)90017-8Search in Google Scholar

70. Slantchev K, Stefanov K, Seizova K, Popov S, Andreev S. Chemical composition of the lipophylic extract from the tunicate Botryllus schlosseri. Z Naturforsch C 2000;55:794–8.10.1515/znc-2000-9-1020Search in Google Scholar

71. Nes W. Role of sterols in membranes. Lipids 1974;9:596–612.10.1007/BF02532509Search in Google Scholar

72. Michibata H, Terada T, Anada N, Yamakawa K, Numakunai T. The accumulation and distribution of vanadium, iron, and manganese in some solitary ascidians. Biol Bull 1986;171:672–81.10.2307/1541632Search in Google Scholar

73. Odate S, Pawlik JR. The role of vanadium in the chemical defense of the solitary tunicate, Phallusia nigra. J Chem Ecol 2007;33:643–54.10.1007/s10886-007-9251-zSearch in Google Scholar

74. Kalk M. Absorption of vanadium by tunicates. Nature 1963;198:1010–1.10.1038/1981010a0Search in Google Scholar

75. Macara IG, McLeod GC, Kustin K. Tunichromes and metal ion accumulation in tunicate blood cells. Comp Biochem Physiol Part B Biochem Mol Biol 1979;63:299–302.10.1016/0305-0491(79)90252-9Search in Google Scholar

76. Papadopoulou C, Kanias GD. Tunicate species as marine pollution indicators. Marine Poll Bull 1977;8:229–31.10.1016/0025-326X(77)90431-3Search in Google Scholar

77. Schroeder HA, Balassa JJ, Tipton IH. Abnormal trace metals in man-Vanadium. J Chron Dis 1963;16:1047–71.10.1016/0021-9681(63)90041-9Search in Google Scholar

78. Byun M-W, Yook H-S, Ahn H-J, Lee K-H, Lee H-J. Quality evaluation of strawberry jams prepared with refined dietary fiber from ascidian (Halocynthia roretzi) tunic. Korean J Food Sci Technol 2000;32:1068–72.Search in Google Scholar

79. Yook HS, Kim JO, Choi JM, Kim DH, Cho SK, Byun MW. Changes of nutritional characteristics and serum cholesterol in rats by the intake of dietary fiber isolated from ascidian (Halocynthia roretzi) tunic. J Korean Soc Food Sci Nutr 2003;32:474–8.10.3746/jkfn.2003.32.3.474Search in Google Scholar

80. Nanri K, Ogawa J, Nishikawa T. Tunic of a pyurid ascidian Microcosmus hartmeyeri Oka is eaten locally in Japan. The Nanki Seibutu 1992;34:135.Search in Google Scholar

81. Cassaro CM, Dietrich CP. Distribution of sulfated mucopolysaccharides in invertebrates. J Biol Chem 1977;252:2254–61.10.1016/S0021-9258(17)40548-5Search in Google Scholar

82. Van Ryn-McKenna J, Ofosu FA, Gray E, Hirsh J, Buchanan MR. Effects of dermatan sulfate and heparin on inhibition of thrombus growth in vivo. Ann NY Acad Sci 1989;556:304–12.10.1111/j.1749-6632.1989.tb22512.xSearch in Google Scholar

83. Linhardt RJ, Hileman RE. Dermatan sulfate as a potential therapeutic agent. Gen Pharmacol 1995;26:443–51.10.1016/0306-3623(94)00231-BSearch in Google Scholar

84. Alberts B. Molecular biology of the cell. NY: Taylor & Francis, 2008.Search in Google Scholar

85. Folmer BM. Sterol surfactants: from synthesis to applications. Adv Colloid Interface Sci 2003;103:99–119.10.1016/S0001-8686(01)00100-2Search in Google Scholar

Received: 2016-1-13
Revised: 2016-1-13
Accepted: 2016-3-6
Published Online: 2016-4-6
Published in Print: 2016-5-1

©2016 by De Gruyter

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.1515/znc-2016-0012/html
Scroll to top button