Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 23, 2022

Secondary metabolites from Detarium microcarpum Guill. and Perr. (Fabaceae)

  • William Fouatio Feudjou , Arnaud Michel Mbock , Valerie Tedjon Sielinou , Hugue Fouotsa , Steven Collins Njonté Wouamba , Racéline Kamkumo Gounoue , Marcel Freeze , Hans-Georg Stammler , Jean Jules Kezeutas Bankeu , Mkounga Pierre , Bruno Ndjakou Lenta , Alembert Tiabou Tchinda , Norbert Sewald and Augustin Ephrem Nkengfack EMAIL logo


The chemical investigation of the ethanol/water (7:3) extract of the roots of Detarium microcarpum (Fabaceae) led to the isolation of one new labdane diterpenoid, microcarpin (1) and one new ceramide derivative, microcarpamide (2), along with eight known secondary metabolites (3–10) including, 5-(carboxymethyl)-5,6,8a-trimethyl-3,4,4a,5,6,7,8,8a-octahydronaphthalene-1-carboxylic acid (3), microcarposide (4), rhinocerotinoic acid (5), 1,7-dihydroxy-6-methylxanthone (6), ursolic acid (7), 3β,23-dihydroxylup-20(29)-en-28-oic acid (8), alphitolic acid (9), and stigmasterol glucoside (10). The structures of these compounds were elucidated based on their spectroscopic data. Although compounds 3 and 4 are known, their crystalline structures are reported here for the first time. These compounds were evaluated in vitro for their antisalmonella activity. The results obtained showed that, microcarpamide (2), microcarposide (4), and rhinocerotinoic acid (5) were moderately active against three salmonella strains: Salmonella typhi, Salmonella enteritidis and Salmonella typhimirium, with minimum inhibition concentration values of 76.7 and 153.5 μM.

Corresponding author: Augustin Ephrem Nkengfack, Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812 Yaoundé, Cameroon, E-mail:


The authors are grateful to the German Academic Exchange Service (DAAD) for the financial support granted to the Yaoundé-Bielefeld Graduate School of Natural Products with Antiparasite and Antibacterial Activities (YaBiNaPA, project N° 57316173).

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: Authors declare no conflict of interest.


1. Tucker, SC. Comparative floral ontogeny in Detarieae (Leguminosae: Caesalpinioideae). Radially symmetrical taxa lacking organ suppression. Am J Bot 2002;89:875–87. in Google Scholar

2. Kouyaté, AM, Van Damme, P, De Meulenaer, B, Diawara, H. Contribution des produits de cueillette dans l’alimentation humaine. Cas de Detarium microcarpum. Afr Focus 2009;22:77–88.10.1163/2031356X-02201007Search in Google Scholar

3. Bastide, B, Ouédraogo, SJ. Feux précoces et production fruitière de Detarium microcarpum Guill. et Perr. en zone sud soudanienne du Burkina Faso. Sci Chang Planétaires Sécher 2009;20:388–93. in Google Scholar

4. Arbonnier, M. Arbres, arbustes et lianes des zones sèches d’Afrique de l’Ouest, 2nd éd. Paris, France: CIRAD-MNHN; 2002.Search in Google Scholar

5. Kerharo, J, Adam, JG. La pharmacopé Sénégalaise Traditionnelle : Plantes Médicinales et Toxiques. Paris: Vigot; 1974.Search in Google Scholar

6. Hutchinson, J, Dalziel, JM. Flora of West Tropical Africa. The British West African Colonies, British Cameroons, the French and Portuguese Colonies South of the Tropic of Cancer to Lake Chad, and Fernando Po., 1(Part II). London: Governments of Nigeria, Ghana, Sierra Leone and the Gambia by the Crown Agents for Oversea Governments and Administrations; 1958.Search in Google Scholar

7. Abreu, PM, Rosa, VS, Araujo, EM, Canda, AB, Kayser, O, Bindseil, KU, et al.. Phytochemical analysis and antimicrobial evaluation of Detarium microcarpum bark extracts. Pharmaceut Pharmacol Lett 1998;8:107–11.Search in Google Scholar

8. Kela, SL, Ogunsusi, RA, Ogbogu, VC, Nwude, N. Susceptibility of two-week old Lymnaea natalensis to some plant extracts. Rev. élev. méd. vét. pays trop. 1989;42:189–92.Search in Google Scholar

9. Ikhiri, K, Ilagouma, AT. Constituents of Detarium microcarpum bark. Fitoterapia 1995;66:274–79.Search in Google Scholar

10. Aquino, R, Ciavatta, ML, De Tommasi, N, Gacs-Baitz, E. Tetranorditerpenes from Detarium microcarpum. Phytochemistry 1992;31:1823–5. in Google Scholar

11. Tincusi, BM, Jimenez, IA, Bazzocchi, IL, Moujir, LM, Mamani, ZA, Barroso, JP, et al.. Antimicrobial terpenoids from the oleoresin of the peruvian medicinal plant Copaifera paupera. Planta Med 2002;68:808–12. in Google Scholar

12. Hosoe, T, Nozawa, K, Lumle, TC, Currah, RS, Fukushima, K, Takizawa, K, et al.. Tetranorditerpene lactones, potent antifungal antibiotics for human pathogenic yeasts, from a unique species of Oidiodendron. Chem Pharm Bull 1999;47:1591–7. in Google Scholar

13. Feudjou, WF, Mbock, AM, Ouahouo, MB, Sielinou, VT, Gounoue, RK, Mkounga, P, et al.. An antibacterial isovaleronitrile diglycoside from Detarium microcarpum Guill. Perr. (Fabaceae). Nat Prod Commun 2020;15:1934578X20936939. in Google Scholar

14. Mbock, MA, Fouatio, WF, Kamkumo, RG, Fokou, PVT, Tsofack, FN, Lunga, PK, et al.. In vitro and in vivo anti-salmonella properties of hydroethanolic extract of Detarium microcarpum Guill. and Perr. (Leguminosae) root bark and LC-MS-based phytochemical analysis. J Ethnopharmacol 2020;260:113049. in Google Scholar

15. Gray, CA, Davies-Coleman, MT, Rivett, DE. An improved synthesis of rhinocerotinoic acid. Tetrahedron 2003;59:165–73. in Google Scholar

16. Pockrandt, D, Ludwig, L, Fan, A, König, GM, Li, S-M. New insights into the biosynthesis of prenylated xanthones: from Aspergillus nidulans catalyses an O-prenylation of xanthones. Chem Bio Chem 2012;13:2764–71. in Google Scholar

17. Seebacher, W, Simic, N, Weis, R, Saf, R, Kunert, O. Complete assignments of 1H and 13C NMR resonances of oleanolic acid, 18α‐oleanolic acid, ursolic acid and their 11‐oxo derivatives. Magn Reson Chem. 2003;41:636–8. in Google Scholar

18. Valencia-Chan, LS, García-Camara, I, Torres-Tapia, LW, Moo-Puc, RE, Peraza-Sanchez, SR. Lupane-type triterpenes of Phoradendron vernicosum. J Nat Prod 2017;80:3038–42. in Google Scholar

19. Kamperdick, C, Adam, G, Van, NH, Van Sung, T. Chemical constituents of Madhuca pasquiery. Z Naturforsch C 1997;52:295–300. in Google Scholar

20. Ferrer, A, Altabella, T, Arró, M, Boronat, A. Emerging roles for conjugated sterols in plants. Prog Lipid Res 2017;67:27–37. in Google Scholar

21. Arun, S, Anakshi, K, Maheshwari, PK. A labdane diterpene and its glycoside from Melodinus monogynus. Phytochemistry 1988;27:2255–9.10.1016/0031-9422(88)80137-7Search in Google Scholar

22. Reddy, P, Rao, RR, Shashidhar, J, Sastry, BS, Rao, JM, Babu, KS. Phytochemical investigation of labdane diterpenes from the rhizomes of Hedychium spicatum and their cytotoxic activity. Bioorg Med Chem Lett 2009;19:6078–81. in Google Scholar

23. Luo, P, Xia, W, Morris-Natschke, SL, Lee, KH, Zhao, Y, Gu, Q, et al.. 2-cyanopyrrole-containing labdane diterpenoid alkaloids from the leaves of Vitex trifolia. J Nat Prod 2017;80:1679–83. in Google Scholar

24. Wouamba, SCN, Happi, GM, Lenta, BN, Sewald, N, Vernoguinamide, KSF. A new ceramide and other compounds from the root of Vernonia guineensis Benth. and their chemophenetic significance. Biochem Systemat Ecol 2020;88:103988. in Google Scholar

25. Bankeu, KJJ, Dawe, A, Mbiantcha, M, Feuya, TGR, Ali, I, Tchuenmogne, TMA, et al.. Characterization of bioactive compounds from Ficus vallis-choudae delile (moraceae). Trends Phytochem Res 2017;1:235–42.Search in Google Scholar

26. Garg, HS, Agrawal, S. A novel sphingosine derivative from the sponge Spirastrella inconstans. J Nat Prod 1995;58:442–5. in Google Scholar

27. Su, BN, Misico, R, Park, EJ, Santarsiero, BD, Mesecar, AD, Fong, HH, et al.. Isolation and characterization of bioactive principles of the leaves and stems of Physalis philadelphica. Tetrahedron 2002;58:3453–66. in Google Scholar

28. Dos Santos, EO, Meira, M, Vale, AED, David, JM, de Queiróz, LP, David, JP. Isolation and characterization of new ceramides from aerial parts of Lepidaploa cotoneaster. Nat Prod Commun 2012;7:1934578X1200700623. in Google Scholar

29. O’brien, J, Wilson, I, Orton, T, Pognan, F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem 2000;267:5421–6. in Google Scholar

30. Efferth, T, Kuete, V. Cameroonian medicinal plants: pharmacology and derived natural products. Front Pharmacol 2010;1:123. in Google Scholar

Supplementary Material

The online version of this article offers supplementary material (

Received: 2021-09-07
Accepted: 2022-02-04
Published Online: 2022-02-23
Published in Print: 2022-05-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 6.12.2023 from
Scroll to top button