Abstract
Dynamics and relaxation of the multiple quantum (MQ) NMR coherences of the zeroth and second orders are studied experimentally and theoretically in a quasi-one-dimensional chain of nuclear spins 19F in calcium fluorapatite. The dependencies of the intensities of those coherences on the time of the preparation period of the MQ NMR experiment is obtained. A good agreement of the experiment with theoretical predictions is demonstrated. Dipolar relaxation of the MQ NMR coherences is investigated on the evolution period of the MQ NMR experiment. A theory of dipolar relaxation of the MQ NMR coherences is developed for the model in which only the ZZ part of the secular dipole–dipole interactions is taken into account (ZZ model). It is shown that the MQ NMR coherence of the zeroth order is not subject to dipolar relaxation in the ZZ model. The experimental data qualitatively agree with the results of the developed theory for the MQ NMR coherence of the second order.
Dedicated to: Kev Salikhov on the occasion of his 80th birthday.
Funding source: Russian Foundation for Basic Research
Award Identifier / Grant number: 16-03-00056
Award Identifier / Grant number: 16-33-00867
Funding statement: The authors thank Professor K.M. Salikhov for fruitful and stimulating discussions. The work is supported by the Russian Foundation for Basic Research (Grants No. 16-03-00056 and No. 16-33-00867) and the Program of the Presidium of RAS No. 1.26 “Electron Spin Resonance, Spin-Dependent Electron Effects and Spin Technologies” (Grant No. 0089-2015-0191).
Acknowledgments:
The authors thank Professor K.M. Salikhov for fruitful and stimulating discussions. The work is supported by the Russian Foundation for Basic Research (Grants No. 16-03-00056 and No. 16-33-00867) and the Program of the Presidium of RAS No. 1.26 “Electron Spin Resonance, Spin-Dependent Electron Effects and Spin Technologies” (Grant No. 0089-2015-0191).
References
1. J. Baum, M. Munowitz, A. N. Garroway, A. Pines, J. Chem. Phys. 83 (1985) 2015.10.1063/1.449344Search in Google Scholar
2. M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge (2000).Search in Google Scholar
3. P. Cappellaro, C. Ramanathan, D. G. Cory, Phys. Rev. Lett. 99 (2007) 250506.10.1103/PhysRevLett.99.250506Search in Google Scholar PubMed
4. G. Kaur, A. Ajoy, P. Cappellaro, New J. Phys. 15 (2013) 093035.10.1088/1367-2630/15/9/093035Search in Google Scholar
5. S. Lacelle, S.-J. Hwang, B. C. Gerstein, J. Chem. Phys. 99 (1993) 8407.10.1063/1.465616Search in Google Scholar
6. M. Tomaselli, S. Hediger, D. Suter, R. R. Ernst, J. Chem. Phys. 105 (1966) 10672.10.1063/1.472875Search in Google Scholar
7. H. C. Krojanski, D. Suter, Phys. Rev. Lett. 93 (2004) 090501.10.1103/PhysRevLett.93.090501Search in Google Scholar PubMed
8. H. Cho, P. Cappellaro, D. G. Cory, C. Ramanathan, Phys. Rev. B 74 (2006) 224434.10.1103/PhysRevB.74.224434Search in Google Scholar
9. M. Lovrić, H. G. Krojanski, D. Suter, Phys. Rev. A 75 (2007) 042305.10.1103/PhysRevA.75.042305Search in Google Scholar
10. G. A. Álvarez, E. P. Danieli, P. R. Levstein, H. M. Pastawski, Phys. Rev. A 82 (2010) 012310.10.1103/PhysRevA.82.012310Search in Google Scholar
11. G. A. Álvarez, D. Suter, Phys. Rev. Lett. 104 (2010) 230403.10.1103/PhysRevLett.104.230403Search in Google Scholar PubMed
12. E. B. Fel’dman, S. Lacelle, Chem. Phys. Lett. 253 (1996) 27.10.1016/0009-2614(96)00239-4Search in Google Scholar
13. E. B. Fel’dman, S. Lacelle, J. Chem. Phys. 107 (1997) 7067.10.1063/1.474949Search in Google Scholar
14. S. I. Doronin, I. I. Maksimov, E. B. Fel’dman, J. Exp. Theor. Phys. 91 (2000) 597.10.1134/1.1320096Search in Google Scholar
15. E. B. Fel’dman, Appl. Magn. Reson. 45 (2014) 797.10.1007/s00723-014-0557-zSearch in Google Scholar
16. D. C. Mattis, The Many Body Problem: An Encyclopedia of Exactly Solved Models in One Dimension, World Scientific, Singapore (1993).10.1142/1666Search in Google Scholar
17. G. Cho, J. P. Yesinowski, Chem. Phys. Lett. 205 (1993) 1.10.1016/0009-2614(93)85157-JSearch in Google Scholar
18. G. Cho, J. P. Yesinowski, J. Phys. Chem. 100 (1996) 15716.10.1021/jp9614815Search in Google Scholar
19. M. Goldman, Spin temperature and Nuclear Magnetic Resonance in Solids, Clarendon, Oxford (1970).Search in Google Scholar
20. S. I. Doronin, S. G. Vasil’ev, A. A. Samoilenko, E. B. Fel’dman, B. A. Shumm, JETP Lett. 101 (2015) 613.10.1134/S0021364015090076Search in Google Scholar
21. U. Haberlen, J. S. Waugh, Phys. Rev. 185 (1969) 420.10.1103/PhysRev.185.420Search in Google Scholar
22. S. I. Doronin, E. B. Fel’dman, I. I. Maximov, J. Magn. Reson. 171 (2004) 37.10.1016/j.jmr.2004.07.017Search in Google Scholar PubMed
23. P. Jordan, E. Wigner, Z. Phys. 47 (1928) 631.10.1007/BF01331938Search in Google Scholar
24. G. A. Álvarez, M. Mishkovsky, E. P. Danieli, P. R. Levstein, H. M. Pastawski, L. Frydman, Phys. Rev. A 81 (2010) 060302.10.1103/PhysRevA.81.060302Search in Google Scholar
25. C. Ramanathan, P. Cappellaro, L. Viola, D. G. Cory, New J. Phys. 13 (2011) 103015.10.1088/1367-2630/13/10/103015Search in Google Scholar
26. A. Abragam, The Principles of Nuclear Magnetism, Clarendon, Oxford (1961).10.1063/1.3057238Search in Google Scholar
27. E. B. Fel’dman, S. Lacelle, J. Chem. Phys. 104 (1996) 2000.10.1063/1.470956Search in Google Scholar
28. M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions, Hemisphere, New York, NY (1987).Search in Google Scholar
29. S. I. Doronin, E. B. Fel’dman, A. I. Zenchuk, J. Chem. Phys. 134 (2011) 034102.10.1063/1.3528040Search in Google Scholar PubMed
©2017 Walter de Gruyter GmbH, Berlin/Boston