Abstract
Chlorophylls are an essential class of cofactors found in all photosynthetic organisms. Upon absorbing a photon, the excited state energy of the chlorophyll can either be transferred to another acceptor molecule, or be used to drive electron transfer. When acting as the primary donor in the bacterial photosynthetic reaction center, light-induced charge separation results in the formation of a cationic bacteriochlorophyll dimer. The hyperfine interactions between the unpaired electron of the 15N labeled bacteriochlorophyll cation radical and its four pyrrole nitrogens are probed with X- and Q-band 15N HYSCORE spectroscopy in frozen solution. The powder-type HYSCORE shows the basic (να(β), νβ(α)) cross-features as well as several types of combination cross-features. The nitrogen tensors were resolved in the squared-frequency representation of the HYSCORE spectra, and simulations of the combination peaks allowed for further refinement of the hyperfine coupling constants. The nitrogen tensors were found to have coupling constants a=3.28 MHz, T=1.23 MHz (N1 and N2), a=4.10 MHz, T=1.25 MHz (N3), and a=4.35 MHz, T=1.70 MHz (N4). The combination features were assigned based on a linear regression analysis of the cross-ridges in the squared-frequency representation as well as spectral simulations. The methodology discussed here will provide an important foundation for analyzing and understanding complex two-dimensional spectra from several I=1/2 nuclei.
Dedicated to: Kev Salikhov on the occasion of his 80th birthday and in recognition of his seminal contributions to the theoretical foundations of pulsed EPR spectroscopy.
Acknowledgments
This research was supported by the DE-FG02-08ER15960 Grant from Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Sciences, U.S. Department of Energy (S.A.D.), and NCRR/NIH Grant S10-RR15878 and S10-RR025438 for pulsed EPR instrumentation. A.T.T. gratefully acknowledges support as a NIH trainee of the Molecular Biophysics Training Program (5T32-GM008276).
References
1. R. E. Blankenship, Molecular Mechanisms of Photosynthesis, 2nd Edition, Wiley-Blackwell, Oxford, UK, (2014), P. 312.Search in Google Scholar
2. P. Heathcote, P. K. Fyfe, M. R. Jones, Trends Biochem. Sci. 27 (2002) 79.10.1016/S0968-0004(01)02034-5Search in Google Scholar
3. M. Y. Okamura, M. L. Paddock, M. S. Graige, G. Feher, Biochim. Biophys. Acta, 1458 (2000) 148.10.1016/S0005-2728(00)00065-7Search in Google Scholar
4. C. N. Hunter, F. Daldal, M. C. Thurnauer, J. T. Beatty (Eds.), The Purple Phototrophic Bacteria, Springer Science + Business Media B.V., Dordrecht, The Netherlands, (2009).10.1007/978-1-4020-8815-5Search in Google Scholar
5. W. Lubitz, Electr. Paramagn. Reson. 19 (2004) 174.10.1039/9781847553560-00174Search in Google Scholar
6. A. Schnegg, A. A. Dubinskii, M. R. Fuchs, Yu. A. Grishin, E. P. Kirilina, W. Lubitz, M. Plato, A. Savitsky, K. Möbius, Appl. Magn. Reson. 31 (2007) 59.10.1007/BF03166248Search in Google Scholar
7. S. A. Dikanov, Electr. Paramagn. Reson. 23 (2013) 103.10.1039/9781849734837-00103Search in Google Scholar
8. J. R. Norris, R. A. Uphaus, H. L. Crespi, J. J. Katz, Proc. Natl. Acad. Sci. USA 68 (1971) 625.10.1073/pnas.68.3.625Search in Google Scholar PubMed PubMed Central
9. W. Lubitz, R. A. Isaacson, E. C. Abresch, G. Feher, Proc. Natl. Acad. Sci. USA 81 (1984) 7792.10.1073/pnas.81.24.7792Search in Google Scholar PubMed PubMed Central
10. H. Käss, J. Rautter, B. Bönigk, P. Höfer, W. Lubitz, J. Phys. Chem. 99 (1995) 436.10.1021/j100001a065Search in Google Scholar
11. J. Tang, C. P. Lin, J. R. Norris, J. Chem. Phys. 83 (1985) 4917.10.1063/1.449750Search in Google Scholar
12. A. V. Astashkin, S. A. Dikanov, Yu. D. Tsvetkov, Chem. Phys. Lett. 130 (1986) 337.10.1016/0009-2614(86)80480-8Search in Google Scholar
13. W. Lubitz, F. Lendzian, M. Plato, H. Scheer, K. Möbius, Appl. Magn. Reson. 13 (1997) 531.10.1007/BF03162225Search in Google Scholar
14. B. Robotham, P. J. O’Malley, Biochemistry 47 (2008) 13261.10.1021/bi801395sSearch in Google Scholar
15. T. Omata, N. Murata, Plant Cell Physiol. 24 (1983) 1093.Search in Google Scholar
16. A. J. Hoff, A. De Groot, S. A. Dikanov, A. V. Astashkin, Yu. D. Tsvetkov, Chem. Phys. Lett. 118 (1985) 40.10.1016/0009-2614(85)85263-5Search in Google Scholar
17. A. T. Taguchi, P. J. O’Malley, C. A. Wraight, S. A. Dikanov, J. Phys. Chem. B 118, (2014) 9225.10.1021/jp5051029Search in Google Scholar
18. S. Stoll, A. Schweiger, J. Magn. Reson. 178 (2006) 42.10.1016/j.jmr.2005.08.013Search in Google Scholar
19. O. Burghaus, M. Plato, D. Bumann, B. Neumann, W. Lubitz, K. Möbius, Chem. Phys. Lett. 185 (1991) 381.10.1016/S0009-2614(91)85079-CSearch in Google Scholar
20. J. J. Shane, P. Höfer, E. J. Reijerse, E. de Boer, J. Magn. Reson. 99 (1992) 596.Search in Google Scholar
21. S. A. Dikanov, A. M. Tyryshkin, M. K. Bowman, J. Magn. Reson. 144 (2000) 228.10.1006/jmre.2000.2055Search in Google Scholar PubMed
22. S. A. Dikanov, M. K. Bowman, J. Magn. Reson. A 116 (1995) 125.10.1006/jmra.1995.1199Search in Google Scholar
23. A. M. Tyryshkin, S. A. Dikanov, D. Goldfarb, J. Magn. Reson. A 105 (1993) 271.10.1006/jmra.1993.1281Search in Google Scholar
24. S. Stoll, C. Calle, G. Mitrikas, A. Schweiger, J. Magn. Reson. 177 (2005) 93.10.1016/j.jmr.2005.07.012Search in Google Scholar PubMed
25. S. A. Dikanov, B. D. Liboiron, C. Orvig, Mol. Phys. 111 (2013) 2967.10.1080/00268976.2013.796412Search in Google Scholar PubMed PubMed Central
Supplemental Material:
The online version of this article (DOI: 10.1515/zpch-2016-0815) offers supplementary material, available to authorized users.
©2017 Walter de Gruyter GmbH, Berlin/Boston