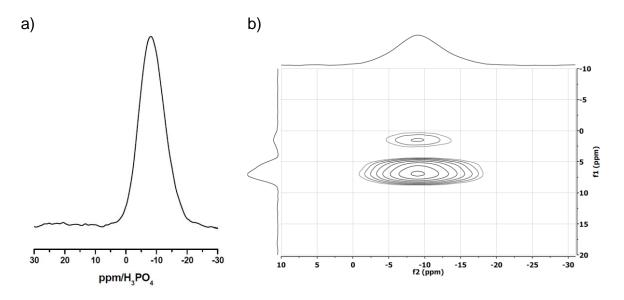
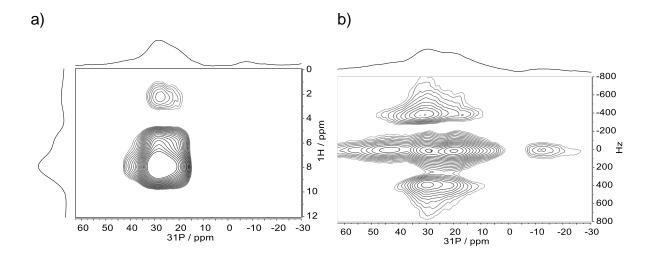
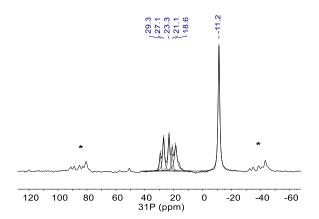
Electronic Supporting Information (ESI)


³¹P-Solid-State NMR Characterization and Catalytic Hydrogenation Tests of Novel heterogeneous Iridium- and Palladium-Catalysts

¹Torsten Gutmann, ¹Safaa Alkhagani, ¹Niels Rothermel, ²Hans-Heinrich Limbach, ¹Hergen Breitzke, ¹Gerd Buntkowsky*


¹Technische Universität Darmstadt, Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Alarich-Weiss-Str. 8, D-64287 Darmstadt, Germany eMail: gerd.buntkowsky@chemie.tu-darmstadt.de

> ²Freie Universität Berlin, FB Biologie, Chemie, Pharmazie, Takustr. 3, D-14195 Berlin, Germany


Dedicated to Prof. Kev Salikhov on the occasion of his 80th birthday.

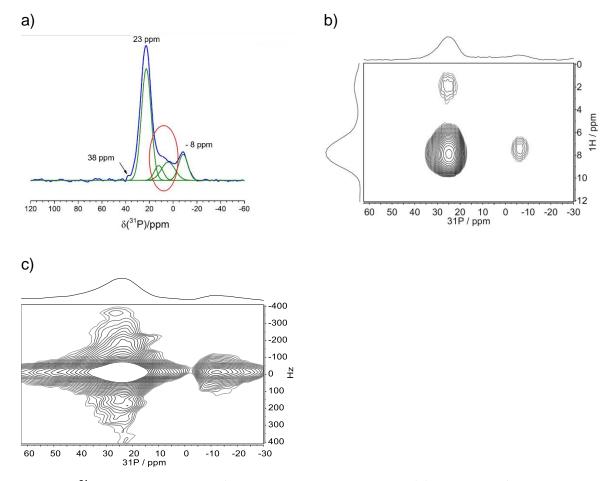

Figure S1. a) ³¹P CP-MAS NMR spectrum of **Si-PB** at 10 KHz spinning. b) Two-dimensional ³¹P-¹H HETCOR of the **Si-PB** structure. f1 is the ¹H dimension, f2 is the ³¹P dimension. The splitting in the f1-dimension proves that the phosphorous is part of the polymeric shell (adapted from ref. ³⁸).

Figure S2: 2D spectra of a **Si-PB-Rh** sample for comparison: a) $^{31}P^{-1}H$ HETCOR with (f1) ^{1}H spectrum and (f2). b) ^{31}P spectrum *J*-resolved $^{31}P^{-31}P$ with (f1) *J* coupling in Hz and (f2) ^{31}P 1D spectrum. (spectrum refers to ref. 38)

Figure S3: ^{31}P CP-MAS spectrum of the neat IrCl(PPh₃)₃ measured at 10 kHz spinning rate. *Note:* Spinning side bands are marked with asterisks.

Figure S4: ³¹P CP-MAS spectrum of **Si-PB-Ir** synthesized at 85 °C. (a) 2D spectra for **Si-PB-Ir** sample synthesized at 85 °C: ³¹P-¹H HETCOR with (f1) ¹H spectrum and (f2) ³¹P spectrum (b), and ³¹P *J*-resolved spectra (f1) *J*-coupling in Hz and (f2) ³¹P 1D spectrum (c).

Note: Spectra were recorded at 10 kHz spinning. The spectrum (a) was measured employing an additional TOSS sequence 67 to suppress the spinning sidebands.