Abstract
Dynamic nuclear polarization (DNP) is a methodology to increase the sensitivity of nuclear magnetic resonance (NMR) spectroscopy. It relies on the transfer of the electron spin polarization from a radical to coupled nuclear spins, driven by microwave excitation resonant with the electron spin transitions. In this work we explore the potential of pulsed multi-frequency microwave excitation in liquids. Here, the relevant DNP mechanism is the Overhauser effect. The experiments were performed with TEMPOL radicals in aqueous solution at room temperature using a Q-band frequency (1.2 T) electron paramagnetic resonance (EPR) spectrometer combined with a Minispec NMR spectrometer. A fast arbitrary waveform generator (AWG) enabled the generation of multi-frequency pulses used to either sequentially or simultaneously excite all three 14N-hyperfine lines of the nitroxide radical. The multi-frequency excitation resulted in a doubling of the observed DNP enhancements compared to single-frequency microwave excitation. Q-band free induction decay (FID) signals of TEMPOL were measured as a function of the excitation pulse length allowing the efficiency of the electron spin manipulation by the microwave pulses to be extracted. Based on this knowledge we could quantitatively model our pulsed DNP enhancements at 1.2 T by numerical solution of the Bloch equations, including electron spin relaxation and experimental parameters. Our results are in good agreement with theoretical predictions. Whereas for a narrow and homogeneous single EPR line continuous wave excitation leads to more efficient DNP enhancements compared to pulsed excitation for the same amount of averaged microwave power. The situation is different for radicals with several hyperfine lines or in the presence of inhomogeneous line broadening. In such cases pulsed single/multi-frequency excitation can lead to larger DNP enhancements.
Dedicated to: Kev Salikhov on the occasion of his 80th birthday.
Acknowledgements
This work was supported by the DFG (Pr. 295/17-1). P. Schöps position is funded by the SPP 1601 New Frontiers in Sensitivity for EPR Spectroscopy: From Biological Cells to Nano Materials from DFG. We acknowledge fruitful discussions with Dr. A. Marko, Dr. B. Endeward, Dr. V. Denysenkov and Dr. A. Bowen. The one-dimensional organic conductor samples were a kind gift of Prof. E. Dormann (University Karlsruhe).
References
1. R. G. Griffin, T. F. Prisner, Phys. Chem. Chem. Phys. 12 (2010) 5737.10.1039/c0cp90019bSearch in Google Scholar
2. D. A. Hall, D. C. Maus, G. J. Gerfen, S. J. Inati, L. R. Becerra, F. W. Dahlquist, R. G. Griffin, Science 276 (1997) 930.10.1126/science.276.5314.930Search in Google Scholar
3. Q. Z. Ni, E. Daviso, T. V. Can, E. Markhasin, S. K. Jawla, T. M. Swager, R. J. Temkin, J. Herzfeld, R. G. Griffin, Accounts Chem. Res. 46 (2013) 1933.10.1021/ar300348nSearch in Google Scholar
4. C. S. Song, K. N. Hu, C. G. Joo, T. M. Swager, R. G. Griffin, J. Am. Chem. Soc. 128 (2006) 11385.10.1021/ja061284bSearch in Google Scholar
5. J. H. Ardenkjaer-Larsen, B. Fridlund, A. Gram, G. Hansson, L. Hansson, M. H. Lerche, R. Servin, M. Thaning, K. Golman, Proc. Natl. Acad. Sci. USA 100 (2003) 10158.10.1073/pnas.1733835100Search in Google Scholar
6. F. A. Gallagher, M. I. Kettunen, S. E. Day, D. E. Hu, J. H. Ardenkjaer-Larsen, R. In’t Zandt, P. R. Jensen, M. Karlsson, K. Golman, M. H. Lerche, K. M. Brindle, Nature 453 (2008) 940.10.1038/nature07017Search in Google Scholar
7. K. Golman, R. In’t Zandt, M. Lerche, R. Pehrson, J. H. Ardenkjaer-Larsen, Cancer Res. 66 (2006) 10855.10.1158/0008-5472.CAN-06-2564Search in Google Scholar
8. B. D. Armstrong, J. Choi, C. Lopez, D. A. Wesener, W. Hubbell, S. Cavagnero, S. Han, J. Am. Chem. Soc. 133 (2011) 5987.10.1021/ja111515sSearch in Google Scholar
9. T. F. Segawa, M. Doppelhauer, L. Garbuio, A. Doll, Y. O. Polyhach, G. Jeschke, J. Chem. Phys. 144 (2016) 194201.10.1063/1.4948988Search in Google Scholar
10. S. Hussain, J. M. Franck, S. Han, Angew. Chem. Int. Edit. 52 (2013) 1953.10.1002/anie.201206147Search in Google Scholar
11. M. D. Lingwood, T. A. Siaw, N. Sailasuta, B. D. Ross, P. Bhattacharya, S. Han, J. Magn. Reson. 205 (2010) 247.10.1016/j.jmr.2010.05.008Search in Google Scholar
12. M. D. Lingwood, T. A. Siaw, N. Sailasuta, O. A. Abulseoud, H. R. Chan, B. D. Ross, P. Bhattacharya, S. Han, Radiology 265 (2012) 418.10.1148/radiol.12111804Search in Google Scholar
13. J. G. Krummenacker, V. P. Denysenkov, M. Terekhov, L. M. Schreiber, T. F. Prisner, J. Magn. Reson. 215 (2012) 94.10.1016/j.jmr.2011.12.015Search in Google Scholar
14. M. Terekhov, J. Krummenacker, V. Denysenkov, K. Gerz, T. Prisner, L. M. Schreiber, Magnet. Reson. Med. 75 (2016) 985.10.1002/mrm.25574Search in Google Scholar
15. M. J. Prandolini, V. P. Denysenkov, M. Gafurov, B. Endeward, T. F. Prisner, J. Am. Chem. Soc. 131 (2009) 6090.10.1021/ja901496gSearch in Google Scholar
16. T. Prisner, V. Denysenkov, D. Sezer, J. Magn. Reson. 264 (2016) 68.10.1016/j.jmr.2015.11.004Search in Google Scholar
17. C. Griesinger, M. Bennati, H. M. Vieth, C. Luchinat, G. Parigi, P. Hoefer, F. Engelke, S. J. Glaser, V. Denysenkov, T. F. Prisner, Prog. Nucl. Magn. Reson. Spectrosc. 64 (2012) 4.10.1016/j.pnmrs.2011.10.002Search in Google Scholar
18. T. V. Can, M. A. Caproini, F. Mentink-Vigier, B. Corzilius, J. J. Walish, M. Rosay, W. E. Maas, M. Baldus, S. Vega, T. M. Swager, R. G. Griffin, J. Chem. Phys. 141 (2014) 064202.10.1063/1.4891866Search in Google Scholar
19. S. Un, T. Prisner, R. T. Weber, M. J. Seaman, K. W. Fishbein, A. E. McDermott, D. J. Singel, R. G. Griffin, Chem. Phys. Lett. 189 (1992) 54.10.1016/0009-2614(92)85152-ZSearch in Google Scholar
20. M. Alecci, D. J. Lurie, J. Magn. Reson. 138 (1999) 313.10.1006/jmre.1999.1721Search in Google Scholar
21. S. E. Korchak, A. S. Kiryutin, K. L. Ivanov, A. V. Yurkovskaya, Y. A. Grishin, H. Zimmermann, H.-M. Vieth, Appl. Magn. Reson. 37 (2009) 515.10.1007/s00723-009-0060-0Search in Google Scholar
22. M.-T. Tuerke, M. Bennati, Phys. Chem. Chem. Phys. 13 (2011) 3630.10.1039/c0cp02126aSearch in Google Scholar
23. A. S. Alexandrov, R. V. Archipov, A. A. Ivanov, O. I. Gnezdilov, M. R. Gafurov, V. D. Skirda, Appl. Magn. Reson. 45 (2014) 1275.10.1007/s00723-014-0606-7Search in Google Scholar
24. E. A. Nasibulov, K. L. Ivanov, A. V. Yurkovskaya, H.-M. Vieth, Phys. Chem. Chem. Phys. 14 (2012) 6459.10.1039/c2cp23896aSearch in Google Scholar
25. P. E. Spindler, Y. Zhang, B. Endeward, N. Gershernzon, T. E. Skinner, S. J. Glaser, T. F. Prisner, J. Magn. Reson. 218 (2012) 49.10.1016/j.jmr.2012.02.013Search in Google Scholar
26. A. Doll, S. Pribitzer, R. Tschaggelar, G. Jeschke, J. Magn. Reson. 230 (2013) 27.10.1016/j.jmr.2013.01.002Search in Google Scholar
27. H. C. Dorn, T. E. Glass, R. Gitti, K. H. Tsai, Appl. Magn. Reson. 2 (1991) 9.10.1007/BF03166265Search in Google Scholar
28. R. Kausik, S. Han, Phys. Chem. Chem. Phys. 13 (2011) 7732.10.1039/c0cp02512gSearch in Google Scholar
29. J. M. Franck, J. A. Scott, S. Han, J. Am. Chem. Soc. 135 (2013) 4175.10.1021/ja3112912Search in Google Scholar
30. O. Jakdetchai, V. Denysenkoy, J. Becker-Baldus, B. Dutagaci, T. F. Prisner, C. Glaubitz, J. Am. Chem. Soc. 136 (2014) 15533.10.1021/ja509799sSearch in Google Scholar
31. G. Sachs, W. Stoecklein, B. Bail, E. Dormann, M. Schwoerer, Chem. Phys. Lett. 89 (1982) 179.10.1016/0009-2614(82)80037-7Search in Google Scholar
32. F. Bloch, Phys. Rev. 70 (1946) 460.10.1103/PhysRev.70.460Search in Google Scholar
33. K. H. Hausser, D. Stehlik, Adv. Magn. Reson. 3 (1968) 79.10.1016/B978-1-4832-3116-7.50010-2Search in Google Scholar
34. J. S. Hyde, J. C. W. Chen, J. H. Freed, J. Chem. Phys. 48 (1968) 4211.10.1063/1.1669760Search in Google Scholar
35. D. Sezer, Phys. Chem. Chem. Phys. 16 (2014) 1022.10.1039/C3CP53565GSearch in Google Scholar
Supplemental Material:
The online version of this article (DOI: 10.1515/zpch-2016-0844) offers supplementary material, available to authorized users.
©2017 Walter de Gruyter GmbH, Berlin/Boston