Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) March 15, 2017

Micro-Raman Scattering of Nanoscale Silicon in Amorphous and Porous Silicon

  • Sangeetha Periasamy , Sasirekha Venkidusamy , Ragavendran Venkatesan , Jeyanthinath Mayandi EMAIL logo , Joshua Pearce , Josefine Helene Selj and Ramakrishnan Veerabahu EMAIL logo

Abstract:

The size effect of nanoscale silicon in both amorphous and porous silicon was investigated with micro-Raman spectroscopy. Silicon nanostructures in amorphous silicon were deposited on quartz substrates by plasma enhanced chemical vapor deposition (PECVD) with deposition powers of 15, 30 and 50 W. Micro-Raman spectra of the nanostructured silicon show the T2g Raman active mode shifting from the 521 cm−1 crystalline Si Raman line to 494, 499 and 504 cm−1 as deposition power increased. Large Raman mode shifts, up to 27 cm−1 and broadening up to 23 cm−1 of the T2g Raman-active mode is attributed to a phonon confinement effect. The analysis of micro-Raman scattering data is useful to understand the role of deposition condition of the silicon sample. In addition, micro-Raman scattering intensity of porous silicon prepared using various current densities such as 10, 50 and 125 mA/cm2 has also been investigated. The effect of phonon confinement on the nanoscale porous silicon has been quantified. The relationship between Raman shift and stress on the porous silicon has been evaluated.

Acknowledgments

This investigation was supported by the UGC-UPE programme. Jeyanthinath Mayandi is thankful to the DST-SERB/F/1829/2012-2013 for partial support. Veerabahu Ramakrishnan thanks the UGC, Government of India for providing micro Raman facilities under the UPE programme and Periasamy Sangeetha is also thankful to UGC for the award of research fellowship under UPE programme. Ragavendran Venkatesan thanks Kevin Bethke for his valuable suggestions and support. The authors also thank the Solar Energy Department, Institute for Energy Technology, Norway for providing samples.

References

1. V. Andrei, K. Bethkea, K. Rademann, Energy Environ. Sci. 9 (2016) 1528.10.1039/C6EE00247ASearch in Google Scholar

2. J. M. Pearce, N. Podraza, R. W. Collins, M. M. Al-Jassim, K. M. Jones, J. Deng, C. R. Wronski. J. Appl. Phys. 101 (2007) 114301.10.1063/1.2714507Search in Google Scholar

3. N. Sánchez Castro, M. A. Palomino-Ovando, D. Estrada-Wiese, J. A. del Río, M. B. de la Mora, R. Doti, J. Faubert, J. E. Lugo. Mesoporous Biomater 3 (2016) 15–26.Search in Google Scholar

4. S. Guha, P. Steiner, W. Lang, J. Appl. Phys. 79 (1996) 8664.10.1063/1.362491Search in Google Scholar

5. A. M. Marmorstein, A. T. Voutsas, R. Solanki, Solid State Electron. 43 (1999) 305.10.1016/S0038-1101(98)00249-4Search in Google Scholar

6. Y. Kang, Y. Qiu, Z. Lei, M. Hu, Opt. Laser. Eng. 43 (2005) 847.10.1016/j.optlaseng.2004.09.005Search in Google Scholar

7. S. Y. Myong, S. W. Kwon, J. H. Kwak, K. S. Lim, J. M. Pearce, M. Konagai, 4th World Conference on Photovoltaic Energy Conversion Proceedings, Waikoloa, HI, USA, (2006) 492.Search in Google Scholar

8. X. L. Wu, G. G. Siu, S. Tong, X. N. Liu, F. Yan, S. S. Jiang, X. K. Zhang, D. Feng, Appl. Phys. Lett. 69 (1996) 523.10.1063/1.117774Search in Google Scholar

9. J. Selj, A. Thogersen, S. E. Foss, E. S. Marstein, Thin Solid Films 519 (2011) 2998.10.1016/j.tsf.2010.12.231Search in Google Scholar

10. I. D. Wolf, Semicond. Sci. Technol. 11 (1996) 139.10.1088/0268-1242/11/2/001Search in Google Scholar

11. O. Tuzun, A. Slaoui, S. Roques, A. Focsa, F. Jomard, D. Ballutaud, Thin Solid Films 517 (2009) 6358.10.1016/j.tsf.2009.02.091Search in Google Scholar

12. N. P. Meshram, A. Kumbhar, R.O. Dusane, Thin Solid Films 519 (2011) 4609.10.1016/j.tsf.2011.01.304Search in Google Scholar

13. D. Han, J. D. Lorentzen, J. Weinberg-Wolf, L. E. McNeil, Q. Wang, J. Appl. Phys. 94 (2003) 2930.10.1063/1.1598298Search in Google Scholar

14. M. Benyoucel, M. Kuball, J. Appl. Phys. 89 (2001) 7903.10.1063/1.1371001Search in Google Scholar

15. Z. Iqbal, S. Veprek, J. Phys. C. Solid State Phys. 15 (1982) 377.10.1088/0022-3719/15/2/019Search in Google Scholar

16. D. Wen-Ge, Y. Jing, M. Ling-Hai, W. Shu-Jie, Y. Wei, F. Guang-Sheng, Commun. Theor. Phys. 55 (2011) 688.10.1088/0253-6102/55/4/33Search in Google Scholar

17. Y. Chen, B. Peng, B. Wang, J. Phys. Chem. C 111 (2007) 5855.10.1021/jp0685028Search in Google Scholar

18. M. J. Konstantinovic, S. Bersier, X. Wang, M. Hayne, P. Lievens, R. E. Silverans, V. V. Moshchalkov, Phy. Rev. B 66 (2002) 161311(R).10.1103/PhysRevB.66.161311Search in Google Scholar

19. S. Trusso, C. Vasi, M. Allegrini, F. Fuso, G. Pennelli, J. Vac. Sci. Technol. B 17 (1999) 468.10.1116/1.590578Search in Google Scholar

20. Z. Sui, P. P. Leong, I. P. Herman, G. S. Higashi, H. Temkin, Appl. Phys. Lett. 60 (1992) 2086.10.1063/1.107097Search in Google Scholar

21. Y. Duan, J. F. Kong, W. Z. Shen, J. Raman Spectrosc. 43 (2012) 756.10.1002/jrs.3094Search in Google Scholar

22. T. D. Kang, H. Lee, S. J. Park, J. Jang, S. Lee, J. Appl. Phys. 92 (2002) 2467.10.1063/1.1499980Search in Google Scholar

23. Q. Li, W. Qui, H. Tan, J. Guo, Y. Kang, Opt. Laser. Eng. 48 (2010) 119.10.1016/j.optlaseng.2009.08.003Search in Google Scholar

24. L. Zhen-kun, K. Yi-Lan, H. Ming, Q. Yu, X. Han, N. Hong-Pan, Chin. Phys. Lett. 21 (2004) 403.10.1088/0256-307X/21/2/053Search in Google Scholar

25. S. K. Deb, N. Mathur, A. P. Roy, S. Banerjee, A. Sadesai, Solid State Commun. 101 (1997) 283.10.1016/S0038-1098(96)00583-2Search in Google Scholar

26. G.-R. Lin, Y.-H. Lin, Y.-H. Pai, F.-S. Meng, Opt. Express 19 (2011) 597.10.1364/OE.19.000597Search in Google Scholar PubMed

27. J. H. Selj, A. Thogersen, S. E. Foss, E. S. Marstein, J. Appl. Phys. 107 (2010) 074904.10.1063/1.3353843Search in Google Scholar

28. S. Sahoo, S. Dhara, S. Mahadevan, A. K. Arora, J. Nanosci. Nanotechnol. 9 (2009) 5604.10.1166/jnn.2009.1141Search in Google Scholar PubMed

29. H. S. Mavi, B. G. Rasheed, R. K. Soni, S. C. Abbi, K. P. Jain, Thin Solid Films 397 (2001) 125.10.1016/S0040-6090(01)01410-9Search in Google Scholar

Received: 2016-12-29
Accepted: 2017-2-7
Published Online: 2017-3-15
Published in Print: 2017-9-26

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 7.7.2023 from https://www.degruyter.com/document/doi/10.1515/zpch-2016-0961/html
Scroll to top button