Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) October 6, 2017

Mn(II) Catalyzed Oxidation of Atenolol by Cerium(IV) in Aqueous Sulfuric Acid Medium: A Spectrophotometer Aided Kinetic, Mechanistic and Thermodynamic Study

  • Ram Gopal Amballa EMAIL logo , Chandra Sekhar Veeravalli , Ravi Kumar Ganta , Raghu Babu Korupolu and Annapurna Nowduri

Abstract

The kinetics and mechanism of manganese(II) catalyzed oxidation of atenolol by cerium(IV) sulfate in aqueous H2SO4 at a constant ionic strength of 0.50 mol dm-3 was studied spectrophotometrically. The reaction showed first order kinetics in cerium(IV) whereas fractional order in both manganese(II) and atenolol. Addition of products showed no effect on the rate of the reaction. The main product, 2-(4-(2-hydroxy-3-oxopropoxy)phenyl)acetamide, was identified with the aid of IR and mass spectral data. Stoichiometry with respect to the drug substrate and reagent was established as 2:1. Added H2SO4, SO42− and HSO4 showed negligible effect on the rate of the reaction. HCe(SO4)3 was found to be the predominant reactive species under the specified experimental conditions. The rate constants (k), catalytic constant (kc) and equilibrium constant (K6) for the proposed mechanism were determined. The kinetic and thermodynamic activation parameters were computed for both the slow rate determining step and complex forming equilibrium step.

Acknowledgments

The corresponding author is grateful to UGC-SERO, Hyderabad for awarding teacher fellowship under FDP, XII plan of UGC, New Delhi. The author thanks the Department of Pharmacy for providing IR and MS facilities. The author is also grateful to all the faculty members of Department of Engineering Chemistry, AUCE (A) for providing general lab facilities and for all the support extended.

Appendix

A1:

(kobs)Total=(kobs)un-catalyzed+kc[Mn(II)]x

where, kc=catalytic constant; x=order with respect to the catalyst.

The catalytic constant may be calculated from the following equation,

kc=(kobs)Total(kobs)un-catalyzed[Mn(II)]x

A2: Rate law derivation

(1)r=d[Ce(IV)]/dt=k[C1][HCe(SO4)3]=kK5K6[Mn(II)][ATN][H+][HCe(SO4)3]=kK5K6K3[Mn(II)][HSO4][Ce(SO4)2][ATN][H+]=kK5K6K3[Mn(II)][HSO4][Ce(SO4)2][ATN][H+]d[Ce(IV)]/dt=kK5K6K3K[Mn(II)][SO42][Ce(IV)][ATN][H+]2
(2)[Ce(IV)]T=[Ce(IV)]f+[HCe(SO4)3]=[Ce(IV)]f+K3[HSO4][Ce(SO4)2]=[Ce(IV)]f+K3[HSO4][Ce(IV)]f[Ce(IV)]T=[Ce(IV)]f{1+KK3[H+][SO42]}

Consider sulfuric acid dissociation,

H2SO4H++HSO4

HSO4KaH++SO42

H+SO42KaKKHSO4

(3)[Ce(IV)]T=[Ce(IV)]f{1+KK3[H+][SO42]}[Ce(IV)]f=[Ce(IV)]T{1+KK3[H+][SO42]}
(4)[Mn(II)]T=[Mn(II)]f+C1=[Mn(II)]f+K6[Mn(II)][ATNH+]=[Mn(II)]f+K5K6[Mn(II)][ATN][H+][Mn(II)]T=[Mn(II)]f{1+K5K6[ATN][H+]}[Mn(II)]f=[Mn(II)]T{1+K5K6[ATN][H+]}

[ATN]T=[ATN]f+C1=[ATN]f+K5K6[Mn(II)][ATN]f[H+][ATN]T=[ATN]f{1+K5K6[Mn(II)][H+]}[ATN]f=[ATN]T{1+K5K6[Mn(II)][H+]}

Since, [Mn(II)]<1, and [Mn(II)][H+]<<1

Hence, K5K6[Mn(II)][H+] may be neglected

(5)[ATN]f=[ATN]T

Re-writing equation (1),

d[Ce(IV)]/dt=kKK5K6K3[Mn(II)]f[SO42][Ce(IV)]f[ATN]f[H+]2

d[Ce(IV)]/dt=kKK5K6K3[Mn(II)][SO42][Ce(IV)]f[ATN]f[H+]2{1+KK3[H+][SO42]}{1+K5K6[ATN][H+]}

d[Ce(IV)]/dt[Ce(IV)]T=kKK5K6K3[Mn(II)][SO42][ATN][H+]21+KK3[H+][SO42]+K5K6[ATN][H+]+KK3K5K6[SO42][ATN][H+]2

kobs=kKK5K6K3[Mn(II)][SO42][ATN][H+]21+KK3[H+][SO42]+K5K6[ATN][H+]+KK3K5K6[SO42][ATN][H+]2

Writing the reciprocal,

1kobs=1+KK3[H+][SO42]+K5K6[ATN][H+]+KK3K5K6[SO42][ATN][H+]2kKK5K6K3[Mn(II)][SO42][ATN][H+]2

Neglecting the term containing inverse square of [H+] and writing the remaining three terms,

(6)1kobs=1kK5K6[Mn(II)][ATN][H+]+1kKK3[Mn(II)][SO42][H+]+1k[Mn(II)][Mn(II)]kobs=1kK5K6[ATN][H+]+1kK3[HSO4]+1k

References

1. A. P. Das, S. Ghosh, S. Mohanty, L. B. Sukla, Toxicol. Environ. Chem. 96 (2015) 981.10.1080/02772248.2015.1005428Search in Google Scholar

2. S. Jahan, T. Gosh, M. Begum, B. K. Saha, Bangladesh J. Med. Sci. 10 (2011) 95.10.3329/bjms.v10i2.7804Search in Google Scholar

3. S. J. Garcia, K. Gellein, T. Syversen, M. Aschner, Toxicol. Sci. 95 (2007) 205.10.1093/toxsci/kfl139Search in Google Scholar PubMed

4. A. B. Santamaria, Indian J. Med. Res. 28 (2008) 484.Search in Google Scholar

5. F. L. Assem, P. Holmes, L. S. Levy, J. Toxicol. Environ. Health B 14 (2011) 537.10.1080/10937404.2011.615111Search in Google Scholar

6. F. A. Cotton, G. Wilkinson, C. A. Murillo, M. Bochmann, Advanced Inorganic Chemistry, 6th ed. Wiley Interscience, New York (1999).Search in Google Scholar

7. M. C. Day, J. Selbin, Theoretical Inorganic Chemistry. Reinhold Publishing Corporation, New York (1964).Search in Google Scholar

8. J. R. Carney, B. R. Dillon, S. P. Thomas, Eur. J. Org. Chem. 23 (2016) 3912.10.1002/ejoc.201600018Search in Google Scholar

9. M. F. White, M. E. Anne, F. H. H. Leenen, Am. J. Hypertens. 12 (1999) 151.10.1016/S0895-7061(98)00220-9Search in Google Scholar PubMed

10. L. Poirier, S.W. Tobe, Can. J. Cardiol. 30 (2014) S9.10.1016/j.cjca.2013.12.001Search in Google Scholar PubMed

11. L. M. Kuyper, N. A. Khan, Can. J. Cardiol. 30 (2014) S47.10.1016/j.cjca.2014.01.006Search in Google Scholar PubMed

12. J. G. Baker, S. J. Hill, R. J. Summers, Trends Pharmacol. Sci. 32 (2011) 227.10.1016/j.tips.2011.02.010Search in Google Scholar PubMed PubMed Central

13. U. Smith, Eur. J. Clin. Invest. 10 (1980) 343.10.1111/j.1365-2362.1980.tb00042.xSearch in Google Scholar PubMed

14. A. Gerber, P. Weidmann, M. G. Bianchetti, C. Ferrier, K. Laederach, R. Mordasini, C. Bachmann, Hypertension 7 (1985) 164.Search in Google Scholar

15. G. R. Dreslinski, F. H. Messerli, F. G. Dunn, D. H. Suarez, E. Reisin, E. D. Frohlich, Circulation 65 (1982) 1365.10.1161/01.CIR.65.7.1365Search in Google Scholar PubMed

16. S. W. Gurpreet, T. C. Shibba, K. Kaza, Suppl. JAPI 57 (2009) 13.Search in Google Scholar

17. A. H. Kunz, J. Am. Chem. Soc. 53 (1931) 98.10.1021/ja01352a014Search in Google Scholar

18. A. A. Noyes, C. S. Garner, J. Am. Chem. Soc. 58 (1936) 1265.10.1021/ja01298a051Search in Google Scholar

19. G. Smith, C. A. Getz, Ind. Eng. Chem. Anal. Ed. 10 (1938) 191.10.1021/ac50120a006Search in Google Scholar

20. D. S. Munavalli, K. A. Thabaj, S. A. Chimatadar, S. T. Nandibewoor, Ind. J. Chem. 46 (2007) 1579.Search in Google Scholar

21. K. B. Yatsimiraskii, A. A. Luzan, Zh. Neorg. Khim. 10 (1965) 2268.Search in Google Scholar

22. G. C. Hiremath, R. M. Kulkarni, S. T. Nandibewoor, Ind. J. Chem. 44 A (2005) 245.Search in Google Scholar

23. R. M. Mulla, G. C. Hiremath, S. T. Nandibewoor, J. Chem. Sci. 117 (2005) 33.10.1007/BF02704359Search in Google Scholar

24. R. K. Patil, S. T. Nandibewoor, S. A. Chimatadar, Russ. J. Phys. Chem. A 86 (2012) 369.10.1134/S0036024412030247Search in Google Scholar

25. S. Putta, N. Suresha, Ind. J. Chem. 47 A (2008) 1649.Search in Google Scholar

26. G. F. Anand, A. Rashmi, J. Chem. Pharm. Res. 3 (2011) 899.Search in Google Scholar

27. G. F. Anand, A. Rashmi, Int. Res. J. Pharm. 3 (2012) 268.Search in Google Scholar

28. M. Bellakki, R. Mahesh, S. T. Nandibewoor, Bioinorg. React. Mech. 6 (2006) 59.Search in Google Scholar

29. W. H. Richardson, Ceric ion oxidation of organic compounds, in: K. B. Wiberg (Ed.): Oxidation in Organic Chemistry, Part A, Academic Press, New York (1965).Search in Google Scholar

30. G. H. Jeffery, J. Bassett, J. Mendham, R. C. Denney, Vogel’s Textbook of Quantitative Chemical Analysis, 6th ed. ELBS Longman, Essex, England (2002).Search in Google Scholar

31. J. Szegezdi, F. Csizmadia, Prediction of dissociation constant using microconstants, in: 27th ACS National Meeting, Anaheim, California, March 28–April 1 (2004).Search in Google Scholar

32. J. Szegezdi, F. Csizmadia, Calculating pKa values of small and large molecules, in: American Chemical Society Spring Meeting, March 25th–29th (2007).Search in Google Scholar

33. F. H. Clark, N. M. Cahoon, J. Pharm. Sci. 76 (1987) 611.10.1002/jps.2600760806Search in Google Scholar PubMed

34. S. L. Dixon, P. C. Jurs, J. Comp. Chem. 14 (1993) 1460.10.1002/jcc.540141208Search in Google Scholar

35. C. M. Henderson, N. A. Miller, Radiat. Res. 13 (1960) 641.10.2307/3571025Search in Google Scholar PubMed

36. A. I. Medalia, B. J. Byrne, Anal. Chem. 23 (1951) 453.10.1021/ac60051a017Search in Google Scholar

37. J. H. Espenson, Chemical Kinetics and Reaction Mechanisms, 2nd ed. McGraw-Hill, New York, NY (1995).Search in Google Scholar

38. L. Gábor, Deterministic Kinetics in Chemistry and Systems Biology, Springer, New York, NY (2015).Search in Google Scholar

39. E. A. Moelwyn-Hughes, Physical Chemistry, Pergamon Press, New York, NY (1961).Search in Google Scholar

40. F. Fiegel, Spot Tests in Organic Analysis, Elsevier, New York (1975).Search in Google Scholar

41. F. Fiegel, Spot Tests in Organic Analysis, 5th ed. Elsevier, Amsterdam (1956).Search in Google Scholar

42. C. R. Gambill, T. D. Roberts, H. Shechter, J. Chem. Educ. 49 (1972) 287.10.1021/ed049p287Search in Google Scholar

43. F. Y. Kulba, Y. B. Yakovlev, V. E. Mironov, Russ. J. Inorg. Chem. 10 (1965) 1113.Search in Google Scholar

44. M. M. A. Doherty, M. D. Radcliffe, G. J. Stedman, Chem. Soc. Dalton. Trans. (1999) 3311.10.1039/a904080cSearch in Google Scholar

45. Y. C. Wu, D. Feng, J. Solution Chem. 24 (1995) 133.10.1007/BF00972837Search in Google Scholar

46. K. J. Laidler, Chemical Kinetics, Pearson Education Pvt. Ltd., New Delhi (2004).Search in Google Scholar

47. S. J. Entelis, R. P. Tiger, Reaction Kinetics in the Liquid, Wiley, New York (1976).Search in Google Scholar

48. S. T. Nandibewoor, V. A. Morab, J. Chem. Soc. Dalton Trans. 3 (1995) 483.10.1039/dt9950000483Search in Google Scholar

49. L. M. Robert, C. A. Robbin, J. Am. Chem. Soc. 67 (1945) 167.10.1021/ja01218a005Search in Google Scholar

50. T. J. Hardwick, E. Robertson, Can. J. Chem. 29 (1951) 828.10.1139/v51-095Search in Google Scholar

51. J. D. Lee, Concise Inorganic Chemistry, 5th ed. Blackwell Science Ltd., London (2005).Search in Google Scholar

52. G. A. Rechnitz, G. N. Rao, G. P. Rao, Anal. Chem. 38 (1966) 1900.10.1021/ac50155a056Search in Google Scholar

53. H. Taube, Mechanisms of redox reactions of simple chemistry, in: H. J. Emeleus, A. G. Sharpe (Eds.): Advances in Inorganic Chemistry and Radiochemistry, Vol. I, Academic Press, New York, NY (1959).Search in Google Scholar

54. S. A. Farokhi, S. T. Nandibewoor, Can. J. Chem. 82 (2011) 1372.10.1139/v04-102Search in Google Scholar

55. R. M. Hassan, D. A. Abdel-Kader, S. M. Ahmed, A. Fawzy, I. A. Zaafarany, B. H. Asghar, H. D. Takagi, Catal. Commun. 11 (2009) 184.10.1016/j.catcom.2009.09.023Search in Google Scholar

56. H. Lineweaver, D. Burk, J. Am. Chem. Soc. 56 (1934) 658.10.1021/ja01318a036Search in Google Scholar

57. K. J. Laidler, M. C. King, J. Phys. Chem. 87 (1983) 2657.10.1021/j100238a002Search in Google Scholar

58. R. V. Jagdeesh, P. Swamya, J. Phys. Org. Chem. 21 (2008) 844.10.1002/poc.1379Search in Google Scholar

59. I. M. Kolthoff, E. J. Meehan, E. M. Carr, J. Am. Chem. Soc. 75 (1953) 1439.10.1021/ja01102a048Search in Google Scholar


Supplemental Material:

The online version of this article offers supplementary material (https://doi.org/10.1515/zpch-2017-0985).


Received: 2017-5-11
Accepted: 2017-8-21
Published Online: 2017-10-6
Published in Print: 2018-2-23

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.3.2023 from https://www.degruyter.com/document/doi/10.1515/zpch-2017-0985/html
Scroll Up Arrow