Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) October 23, 2017

Isomer Identification in Flames with Double-Imaging Photoelectron/Photoion Coincidence Spectroscopy (i2PEPICO) using Measured and Calculated Reference Photoelectron Spectra

  • Julia Pieper EMAIL logo , Steffen Schmitt , Christian Hemken , Emma Davies , Julia Wullenkord , Andreas Brockhinke , Julia Krüger , Gustavo A. Garcia , Laurent Nahon , Arnas Lucassen , Wolfgang Eisfeld and Katharina Kohse-Höinghaus EMAIL logo


Double-imaging photoelectron/photoion coincidence (i2PEPICO) spectroscopy using a multiplexing, time-efficient, fixed-photon-energy approach offers important opportunities of gas-phase analysis. Building on successful applications in combustion systems that have demonstrated the discriminative power of this technique, we attempt here to push the limits of its application further to more chemically complex combustion examples. The present investigation is devoted to identifying and potentially quantifying compounds featuring five heavy atoms in laminar, premixed low-pressure flames of hydrocarbon and oxygenated fuels and their mixtures. In these combustion examples from flames of cyclopentene, iso-pentane, iso-pentane blended with dimethyl ether (DME), and diethyl ether (DEE), we focus on the unambiguous assignment and quantitative detection of species with the sum formulae C5H6, C5H7, C5H8, C5H10, and C4H8O in the respective isomer mixtures, attempting to provide answers to specific chemical questions for each of these examples. To analyze the obtained i2PEPICO results from these combustion situations, photoelectron spectra (PES) from pure reference compounds, including several examples previously unavailable in the literature, were recorded with the same experimental setup as used in the flame measurements. In addition, PES of two species where reference spectra have not been obtained, namely 2-methyl-1-butene (C5H10) and the 2-cyclopentenyl radical (C5H7), were calculated on the basis of high-level ab initio calculations and Franck-Condon (FC) simulations. These reference measurements and quantum chemical calculations support the early fuel decomposition scheme in the cyclopentene flame towards 2-cyclopentenyl as the dominant fuel radical as well as the prevalence of branched intermediates in the early fuel destruction reactions in the iso-pentane flame, with only minor influences from DME addition. Furthermore, the presence of ethyl vinyl ether (EVE) in DEE flames that was predicted by a recent DEE combustion mechanism could be confirmed unambiguously. While combustion measurements using i2PEPICO can be readily obtained in isomer-rich situations, we wish to highlight the crucial need for high-quality reference information to assign and evaluate the obtained spectra.

Corresponding authors: Julia Pieper and Katharina Kohse-Höinghaus, Physical Chemistry I, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany, Phone: +49 521 106 6308 (J. Pieper); +49 521 106 2052 (K. Kohse-Höinghaus), Fax: +49 521 106 15 6887


The experiments at the SOLEIL synchrotron were performed under proposal 20150205. We would like to thank the SOLEIL staff for smoothly running the facility and for ongoing support during our measurements. In particular, we appreciate the technical help provided by Jean-François Gil. We wish to thank Dr. Michael Letzgus for programming support with the numerical minimization procedure.


1. O. Welz, J. D. Savee, D. L. Osborn, S. S. Vasu, C. J. Percival, D. E. Shallcross, C. A. Taatjes, Science 335 (2012) 204.10.1126/science.1213229Search in Google Scholar PubMed

2. S. R. Leone, M. Ahmed, K. R. Wilson, Phys. Chem. Chem. Phys. 12 (2010) 6564.10.1039/c001707hSearch in Google Scholar PubMed

3. P. Hemberger, M. Steinbauer, M. Schneider, I. Fischer, M. Johnson, A. Bodi, T. Gerber, J. Phys. Chem. A 114 (2010) 4698.10.1021/jp9068569Search in Google Scholar PubMed

4. M. Steinbauer, J. Giegerich, K. H. Fischer, I. Fischer, J. Chem. Phys. 137 (2012) 014303.10.1063/1.4731285Search in Google Scholar PubMed

5. F. Jiao, J. Li, X. Pan, J. Xiao, H. Li, H. Ma, M. Wei, Y. Pan, Z. Zhou, M. Li, S. Miao, J. Li, Y. Zhu, D. Xiao, T. He, J. Yang, F. Qi, Q. Fu, X. Bao, Science 351 (2016) 1065.10.1126/science.aaf1835Search in Google Scholar PubMed

6. F. Holzmeier, M.-P. Herbert, I. Fischer, M. Steglich, A. Bodi, P. Hemberger, J. Anal. Appl. Pyrolysis 124 (2017) 454.10.1016/j.jaap.2017.02.020Search in Google Scholar

7. F. Qi, Proc. Combust. Inst. 34 (2013) 33.10.1016/j.proci.2012.09.002Search in Google Scholar

8. N. Hansen, T. A. Cool, P. R. Westmoreland, K. Kohse-Höinghaus, Prog. Energy Combust. Sci. 35 (2009) 168.10.1016/j.pecs.2008.10.001Search in Google Scholar

9. Z. S. Li, B. Li, Z. W. Sun, X. S. Bai, M. Aldén, Combust. Flame 157 (2010) 1087.10.1016/j.combustflame.2010.02.017Search in Google Scholar

10. K. Kohse-Höinghaus, Chem. Eur. J. 22 (2016) 13390.10.1002/chem.201602676Search in Google Scholar PubMed

11. T. Lu, C. K. Law, Prog. Energy Combust. Sci. 35 (2009) 192.10.1016/j.pecs.2008.10.002Search in Google Scholar

12. K. Moshammer, A. W. Jasper, D. M. Popolan-Vaida, Z. Wang, V. S. Bhavani Shankar, L. Ruwe, C. A. Taatjes, P. Dagaut, N. Hansen, J. Phys. Chem. A 120 (2016) 7890.10.1021/acs.jpca.6b06634Search in Google Scholar PubMed

13. J. Zádor, H. Huang, O. Welz, J. Zetterberg, D. L. Osborn, C. A. Taatjes, Phys. Chem. Chem. Phys. 15 (2013) 10753.10.1039/c3cp51185eSearch in Google Scholar PubMed

14. Z. Wang, L. Zhang, K. Moshammer, D. M. Popolan-Vaida, V. S. Bhavani Shankar, A. Lucassen, C. Hemken, C. A. Taatjes, S. R. Leone, K. Kohse-Höinghaus, N. Hansen, P. Dagaut, S. M. Sarathy, Combust. Flame 164 (2016) 386.10.1016/j.combustflame.2015.11.035Search in Google Scholar

15. F. Battin-Leclerc, O. Herbinet, P.-A. Glaude, R. Fournet, Z. Zhou, L. Deng, H. Guo, M. Xie, F. Qi, Angew. Chem. Int. Ed. 49 (2010) 3169.10.1002/anie.200906850Search in Google Scholar PubMed PubMed Central

16. P. T. Lynch, T. P. Troy, M. Ahmed, R. S. Tranter, Anal. Chem. 87 (2015) 2345.10.1021/ac5041633Search in Google Scholar PubMed

17. L. Ruwe, K. Moshammer, N. Hansen, K. Kohse-Höinghaus, Combust. Flame 175 (2017) 34.10.1016/j.combustflame.2016.06.032Search in Google Scholar

18. L. Seidel, K. Moshammer, X. Wang, T. Zeuch, K. Kohse-Höinghaus, F. Mauss, Combust. Flame 162 (2015) 2045.10.1016/j.combustflame.2015.01.002Search in Google Scholar

19. Y. Li, F. Qi, Acc. Chem. Res. 43 (2010) 68.10.1021/ar900130bSearch in Google Scholar PubMed

20. N. Hansen, M. Schenk, K. Moshammer, K. Kohse-Höinghaus, Combust. Flame 180 (2017) 250.10.1016/j.combustflame.2016.09.013Search in Google Scholar

21. L. S. Tran, B. Sirjean, P. A. Glaude, R. Fournet, F. Battin-Leclerc, Energy 43 (2012) 4.10.1016/ in Google Scholar PubMed PubMed Central

22. S. S. Merchant, C. F. Goldsmith, A. G. Vandeputte, M. P. Burke, S. J. Klippenstein, W. H. Green, Combust. Flame 162 (2015) 3658.10.1016/j.combustflame.2015.07.005Search in Google Scholar

23. C.-W. Zhou, Y. Li, E. O’Connor, K. P. Somers, S. Thion, C. Keesee, O. Mathieu, E. L. Petersen, T. A. DeVerter, M. A. Oehlschlaeger, G. Kukkadapu, C.-J. Sung, M. Alrefae, F. Khaled, A. Farooq, P. Dirrenberger, P.-A. Glaude, F. Battin-Leclerc, J. Santner, Y. Ju, T. Held, F. M. Haas, F. L. Dryer, H. J. Curran, Combust. Flame 167 (2016) 353.10.1016/j.combustflame.2016.01.021Search in Google Scholar

24. S. M. Sarathy, P. Oßwald, N. Hansen, K. Kohse-Höinghaus, Prog. Energy Combust. Sci. 44 (2014) 40.10.1016/j.pecs.2014.04.003Search in Google Scholar

25. K. Kohse-Höinghaus, P. Oßwald, T. A. Cool, T. Kasper, N. Hansen, F. Qi, C. K. Westbrook, P. R. Westmoreland, Angew. Chem. Int. Ed. 49 (2010) 3572.10.1002/anie.200905335Search in Google Scholar PubMed

26. N. Hansen, T. Kasper, S. J. Klippenstein, P. R. Westmoreland, M. E. Law, C. A. Taatjes, K. Kohse-Höinghaus, J. Wang, T. A. Cool, J. Phys. Chem. A 111 (2007) 4081.10.1021/jp0683317Search in Google Scholar PubMed

27. B. Brehm, E. von Puttkamer, Z. Naturforsch. A 22 (1967) 8.10.1515/zna-1967-0103Search in Google Scholar

28. A. Bodi, B. Sztáray, T. Baer, M. Johnson, T. Gerber, Rev. Sci. Instrum. 78 (2007) 084102.10.1063/1.2776012Search in Google Scholar PubMed

29. A. T. J. B. Eppink, D. H. Parker, Rev. Sci. Instrum. 68 (1997) 3477.10.1063/1.1148310Search in Google Scholar

30. B. Sztáray, T. Baer, Rev. Sci. Instrum. 74 (2003) 3763.10.1063/1.1593788Search in Google Scholar

31. X. Tang, X. Zhou, M. Niu, S. Liu, J. Sun, X. Shan, F. Liu, L. Sheng, Rev. Sci. Instrum. 80 (2009) 113101.10.1063/1.3250872Search in Google Scholar PubMed

32. A. Bodi, P. Hemberger, T. Gerber, B. Sztáray, Rev. Sci. Instrum. 83 (2012) 083105.10.1063/1.4742769Search in Google Scholar PubMed

33. G. A. Garcia, B. K. Cunha de Miranda, M. Tia, S. Daly, L. Nahon, Rev. Sci. Instrum. 84 (2013) 053112.10.1063/1.4807751Search in Google Scholar PubMed

34. J. C. Poully, J. P. Schermann, N. Nieuwjaer, F. Lecomte, G. Grégoire, C. Desfrançois, G. A. Garcia, L. Nahon, D. Nandi, L. Poisson, M. Hochlaf, Phys. Chem. Chem. Phys. 12 (2010) 3566.10.1039/b923630aSearch in Google Scholar PubMed

35. P. Bréchignac, G. A. Garcia, C. Falvo, C. Joblin, D. Kokkin, A. Bonnamy, P. Parneix, T. Pino, O. Pirali, G. Mulas, L. Nahon, J. Chem. Phys. 141 (2014) 164325.10.1063/1.4900427Search in Google Scholar PubMed

36. T. Baer, R. P. Tuckett, Phys. Chem. Chem. Phys. 19 (2017) 9698.10.1039/C7CP00144DSearch in Google Scholar PubMed

37. A. Bodi, P. Hemberger, D. L. Osborn, B. Sztáray, J. Phys. Chem. Lett. 4 (2013) 2948.10.1021/jz401500cSearch in Google Scholar

38. P. Oßwald, P. Hemberger, T. Bierkandt, E. Akyildiz, M. Köhler, A. Bodi, T. Gerber, T. Kasper, Rev. Sci. Instrum. 85 (2014) 025101.10.1063/1.4861175Search in Google Scholar PubMed

39. X. Mercier, S. Batut, A. Faccinetto, G. Vanhove, A. El Bakali, P. Desgroux, D. Bozanic, G. Garcia, L. Nahon, Proc. 8th Eur. Combust. Meet. (2017) 529.Search in Google Scholar

40. J. Krüger, G. A. Garcia, D. Felsmann, K. Moshammer, A. Lackner, A. Brockhinke, L. Nahon, K. Kohse-Höinghaus, Phys. Chem. Chem. Phys. 16 (2014) 22791.10.1039/C4CP02857KSearch in Google Scholar PubMed

41. D. Felsmann, A. Lucassen, J. Krüger, C. Hemken, L.-S. Tran, J. Pieper, G. A. Garcia, A. Brockhinke, L. Nahon, K. Kohse-Höinghaus, Z. Phys. Chem. 230 (2016) 1067.10.1515/zpch-2016-0760Search in Google Scholar

42. X. C. Lu, D. Han, Z. Huang, Prog. Energy Combust. Sci. 37 (2011) 741.10.1016/j.pecs.2011.03.003Search in Google Scholar

43. J.-B. Masurier, F. Foucher, G. Dayma, P. Dagaut, Proc. Combust. Inst. 35 (2015) 3125.10.1016/j.proci.2014.05.060Search in Google Scholar

44. M. Jia, M. Xie, Fuel 85 (2006) 2593.10.1016/j.fuel.2006.02.018Search in Google Scholar

45. C. K. Westbrook, W. J. Pitz, H. J. Curran, J. Phys. Chem. A 110 (2006) 6912.10.1021/jp056362gSearch in Google Scholar PubMed

46. B.-Q. He, S.-J. Shuai, J.-X. Wang, H. He, Atmos. Environ. 37 (2003) 4965.10.1016/j.atmosenv.2003.08.029Search in Google Scholar

47. G. Fontaras, G. Karavalakis, M. Kousoulidou, L. Ntziachristos, E. Bakeas, S. Stournas, Z. Samaras, Environ. Pollut. 158 (2010) 2496.10.1016/j.envpol.2009.11.021Search in Google Scholar PubMed

48. K. Zhang, K. Moshammer, P. Oßwald, K. Kohse-Höinghaus, Proc. Combust. Inst. 34 (2013) 763.10.1016/j.proci.2012.06.007Search in Google Scholar

49. F. Herrmann, P. Oßwald, K. Kohse-Höinghaus, Proc. Combust. Inst. 34 (2013) 771.10.1016/j.proci.2012.06.136Search in Google Scholar

50. J. Bugler, B. Marks, O. Mathieu, R. Archuleta, A. Camou, C. Grégoire, K. A. Heufer, E. L. Petersen, H. J. Curran, Combust. Flame 163 (2016) 138.10.1016/j.combustflame.2015.09.014Search in Google Scholar

51. L.-S. Tran, J. Pieper, H.-H. Carstensen, H. Zhao, I. Graf, Y. Ju, F. Qi, K. Kohse-Höinghaus, Proc. Combust. Inst. 36 (2017) 1165.10.1016/j.proci.2016.06.087Search in Google Scholar

52. K. Yasunaga, F. Gillespie, J. M. Simmie, H. J. Curran, Y. Kuraguchi, H. Hoshikawa, M. Yamane, Y. Hidaka, J. Phys. Chem. A 114 (2010) 9098.10.1021/jp104070aSearch in Google Scholar PubMed

53. J. Hashimoto, K. Tanoue, N. Taide, Y. Nouno, Proc. Combust. Inst. 35 (2015) 973.10.1016/j.proci.2014.05.013Search in Google Scholar

54. X. Tang, G. A. Garcia, J.-F. Gil, L. Nahon, Rev. Sci. Instrum. 86 (2015) 123108.10.1063/1.4937624Search in Google Scholar PubMed

55. G. A. Garcia, L. Nahon, I. Powis, Rev. Sci. Instrum. 75 (2004) 4989.10.1063/1.1807578Search in Google Scholar

56. G. A. Garcia, H. Soldi-Lose, L. Nahon, Rev. Sci. Instrum. 80 (2009) 023102.10.1063/1.3079331Search in Google Scholar PubMed

57. L. Nahon, N. de Oliveira, G. A. Garcia, J.-F. Gil, B. Pilette, O. Marcouillé, B. Lagarde, F. Polack, J. Synchrotron Rad. 19 (2012) 508.10.1107/S0909049512010588Search in Google Scholar PubMed

58. R. J. Bartlett, M. Musiał, Rev. Mod. Phys. 79 (2007) 291.10.1103/RevModPhys.79.291Search in Google Scholar

59. G. Knizia, T. B. Adler, H.-J. Werner, J. Chem. Phys. 130 (2009) 054104.10.1063/1.3054300Search in Google Scholar PubMed

60. T. E. Sharp, H. M. Rosenstock, J. Chem. Phys. 41 (1964) 3453.10.1063/1.1725748Search in Google Scholar

61. H.-J. Werner, P. J. Knowles, G. Knizia, M. Manby, M. Schütz, MOLPRO Version 2009 (2009).Search in Google Scholar

62. LOGE Lund Combustion Engineering, LOGEsoft v1.08 (2016).Search in Google Scholar

63. U. Struckmeier, P. Oßwald, T. Kasper, L. Böhling, M. Heusing, M. Köhler, A. Brockhinke, K. Kohse-Höinghaus, Z. Phys. Chem. 223 (2009) 503.10.1524/zpch.2009.6049Search in Google Scholar

64. L.-S. Tran, J. Pieper, M. Zeng, Y. Li, X. Zhang, W. Li, I. Graf, F. Qi, K. Kohse-Höinghaus, Combust. Flame 175 (2017) 47.10.1016/j.combustflame.2016.06.031Search in Google Scholar

65. X. Yang, D. Felsmann, N. Kurimoto, J. Krüger, T. Wada, T. Tan, E. A. Carter, K. Kohse-Höinghaus, Y. Ju, Proc. Combust. Inst. 35 (2015) 491.10.1016/j.proci.2014.05.058Search in Google Scholar

66. P.-O. Löwdin, Rev. Mod. Phys. 35 (1963) 496.10.1103/RevModPhys.35.496Search in Google Scholar

67. J. Paldus, A. Veillard, Mol. Phys. 35 (1978) 445.10.1080/00268977800100331Search in Google Scholar

68. E. R. Davidson, W. T. Borden, J. Phys. Chem. 87 (1983) 4783.10.1021/j150642a005Search in Google Scholar

69. W. Eisfeld, K. Morokuma, J. Chem. Phys. 113 (2000) 5587.10.1063/1.1290607Search in Google Scholar

70. T. Shiozaki, G. Knizia, H.-J. Werner, J. Chem. Phys. 134 (2011) 034113.10.1063/1.3528720Search in Google Scholar PubMed

71. T. Shiozaki, H.-J. Werner, J. Chem. Phys. 134 (2011) 184104.10.1063/1.3587632Search in Google Scholar PubMed

72. F. P. Lossing, J. C. Traeger, J. Am. Chem. Soc. 97 (1975) 1579.10.1021/ja00839a053Search in Google Scholar

73. N. Hansen, S. J. Klippenstein, J. A. Miller, J. Wang, T. A. Cool, M. E. Law, P. R. Westmoreland, T. Kasper, K. Kohse-Höinghaus, J. Phys. Chem. A 110 (2006) 4376.10.1021/jp0569685Search in Google Scholar PubMed

74. F. P. Lossing, J. C. Traeger, Int. J. Mass Spectrom. Ion Phys. 19 (1976) 9.10.1016/0020-7381(76)83002-1Search in Google Scholar

75. S. Pignataro, A. Cassuto, F. P. Lossing, J. Am. Chem. Soc. 89 (1967) 3693.10.1021/ja00991a004Search in Google Scholar

76. G. Bieri, F. Burger, E. Heilbronner, J. P. Maier, Helv. Chim. Acta 60 (1977) 2213.10.1002/hlca.19770600714Search in Google Scholar

77. J. C. Traeger, J. Phys. Chem. 90 (1986) 4114.10.1021/j100408a055Search in Google Scholar

78. P. Masclet, G. Mouvier, J. F. Bocquet, J. Chim. Phys. 78 (1981) 99.10.1051/jcp/1981780099Search in Google Scholar

79. M. Newville, T. Stensitzki, D. B. Allen, A. Ingargiola, LMFIT: Non-Linear Least-Square Minimization and Curve-Fitting for Python, (2014).Search in Google Scholar

80. B. Yang, J. Wang, T. A. Cool, N. Hansen, S. Skeen, D. L. Osborn, Int. J. Mass Spectrom. 309 (2012) 118.10.1016/j.ijms.2011.09.006Search in Google Scholar

81. T. A. Cool, J. Wang, K. Nakajima, C. A. Taatjes, A. Mcllroy, Int. J. Mass Spectrom. 247 (2005) 18.10.1016/j.ijms.2005.08.018Search in Google Scholar

82. J. Wang, B. Yang, T. A. Cool, N. Hansen, T. Kasper, Int. J. Mass Spectrom. 269 (2008) 210.10.1016/j.ijms.2007.10.013Search in Google Scholar

83. F. Paulot, J. D. Crounse, H. G. Kjaergaard, J. H. Kroll, J. H. Seinfeld, P. O. Wennberg, Atmos. Chem. Phys. 9 (2009) 1479.10.5194/acp-9-1479-2009Search in Google Scholar

84. G. Martins, A. M. Ferreira-Rodrigues, F. N. Rodrigues, G. G. B. de Souza, N. J. Mason, S. Eden, D. Duflot, J.-P. Flament, S. V. Hoffmann, J. Delwiche, M.-J. Hubin-Franskin, P. Limão-Vieira, Phys. Chem. Chem. Phys. 11 (2009) 11219.10.1039/b916620cSearch in Google Scholar PubMed

85. T. Adam, R. Zimmermann, Anal. Bioanal. Chem. 389 (2007) 1941.10.1007/s00216-007-1571-xSearch in Google Scholar PubMed

86. A. Lucassen, K. Zhang, J. Warkentin, K. Moshammer, P. Glarborg, P. Marshall, K. Kohse-Höinghaus, Combust. Flame 159 (2012) 2254.10.1016/j.combustflame.2012.02.024Search in Google Scholar

87. A. Lucassen, P. Oßwald, U. Struckmeier, K. Kohse-Höinghaus, T. Kasper, N. Hansen, T. A. Cool, P. R. Westmoreland, Proc. Combust. Inst. 32 (2009) 1269.10.1016/j.proci.2008.06.053Search in Google Scholar

88. J.-P. Morizur, J. Mercier, M. Sarraf, Org. Mass Spectrom. 17 (1982) 327.10.1002/oms.1210170708Search in Google Scholar

89. J. L. Holmes, F. P. Lossing, Can. J. Chem. 60 (1982) 2365.10.1139/v82-338Search in Google Scholar

90. J. M. Behan, F. M. Dean, R. A. W. Johnstone, Tetrahedron 32 (1976) 167.10.1016/0040-4020(76)80038-5Search in Google Scholar

91. J. L. Holmes, F. P. Lossing, P. C. Burgers, Int. J. Mass Spectrom. Ion Phys. 47 (1983) 133.10.1016/0020-7381(83)87154-XSearch in Google Scholar

92. J. C. Traeger, D. J. McAdoo, Int. J. Mass Spectrom. Ion Process. 68 (1986) 35.10.1016/0168-1176(86)87066-5Search in Google Scholar

93. J. C. Traeger, Org. Mass Spectrom. 20 (1985) 223.10.1002/oms.1210200311Search in Google Scholar

94. M. J. S. Dewar, S. D. Worley, J. Chem. Phys. 50 (1969) 654.10.1063/1.1671114Search in Google Scholar

Supplemental Material:

The online version of this article offers supplementary material (

Received: 2017-7-11
Accepted: 2017-8-31
Published Online: 2017-10-23
Published in Print: 2018-2-23

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.9.2023 from
Scroll to top button