Skip to content
Licensed Unlicensed Requires Authentication Published by Oldenbourg Wissenschaftsverlag October 23, 2017

Isomer Identification in Flames with Double-Imaging Photoelectron/Photoion Coincidence Spectroscopy (i2PEPICO) using Measured and Calculated Reference Photoelectron Spectra

Julia Pieper, Steffen Schmitt, Christian Hemken, Emma Davies, Julia Wullenkord, Andreas Brockhinke, Julia Krüger, Gustavo A. Garcia, Laurent Nahon, Arnas Lucassen, Wolfgang Eisfeld and Katharina Kohse-Höinghaus

Abstract

Double-imaging photoelectron/photoion coincidence (i2PEPICO) spectroscopy using a multiplexing, time-efficient, fixed-photon-energy approach offers important opportunities of gas-phase analysis. Building on successful applications in combustion systems that have demonstrated the discriminative power of this technique, we attempt here to push the limits of its application further to more chemically complex combustion examples. The present investigation is devoted to identifying and potentially quantifying compounds featuring five heavy atoms in laminar, premixed low-pressure flames of hydrocarbon and oxygenated fuels and their mixtures. In these combustion examples from flames of cyclopentene, iso-pentane, iso-pentane blended with dimethyl ether (DME), and diethyl ether (DEE), we focus on the unambiguous assignment and quantitative detection of species with the sum formulae C5H6, C5H7, C5H8, C5H10, and C4H8O in the respective isomer mixtures, attempting to provide answers to specific chemical questions for each of these examples. To analyze the obtained i2PEPICO results from these combustion situations, photoelectron spectra (PES) from pure reference compounds, including several examples previously unavailable in the literature, were recorded with the same experimental setup as used in the flame measurements. In addition, PES of two species where reference spectra have not been obtained, namely 2-methyl-1-butene (C5H10) and the 2-cyclopentenyl radical (C5H7), were calculated on the basis of high-level ab initio calculations and Franck-Condon (FC) simulations. These reference measurements and quantum chemical calculations support the early fuel decomposition scheme in the cyclopentene flame towards 2-cyclopentenyl as the dominant fuel radical as well as the prevalence of branched intermediates in the early fuel destruction reactions in the iso-pentane flame, with only minor influences from DME addition. Furthermore, the presence of ethyl vinyl ether (EVE) in DEE flames that was predicted by a recent DEE combustion mechanism could be confirmed unambiguously. While combustion measurements using i2PEPICO can be readily obtained in isomer-rich situations, we wish to highlight the crucial need for high-quality reference information to assign and evaluate the obtained spectra.


Corresponding authors: Julia Pieper and Katharina Kohse-Höinghaus, Physical Chemistry I, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany, Phone: +49 521 106 6308 (J. Pieper); +49 521 106 2052 (K. Kohse-Höinghaus), Fax: +49 521 106 15 6887

Acknowledgments

The experiments at the SOLEIL synchrotron were performed under proposal 20150205. We would like to thank the SOLEIL staff for smoothly running the facility and for ongoing support during our measurements. In particular, we appreciate the technical help provided by Jean-François Gil. We wish to thank Dr. Michael Letzgus for programming support with the numerical minimization procedure.

References

1. O. Welz, J. D. Savee, D. L. Osborn, S. S. Vasu, C. J. Percival, D. E. Shallcross, C. A. Taatjes, Science 335 (2012) 204.2224677310.1126/science.1213229Search in Google Scholar

2. S. R. Leone, M. Ahmed, K. R. Wilson, Phys. Chem. Chem. Phys. 12 (2010) 6564.2041917710.1039/c001707hSearch in Google Scholar

3. P. Hemberger, M. Steinbauer, M. Schneider, I. Fischer, M. Johnson, A. Bodi, T. Gerber, J. Phys. Chem. A 114 (2010) 4698.10.1021/jp906856919813740Search in Google Scholar

4. M. Steinbauer, J. Giegerich, K. H. Fischer, I. Fischer, J. Chem. Phys. 137 (2012) 014303.2277964410.1063/1.4731285Search in Google Scholar

5. F. Jiao, J. Li, X. Pan, J. Xiao, H. Li, H. Ma, M. Wei, Y. Pan, Z. Zhou, M. Li, S. Miao, J. Li, Y. Zhu, D. Xiao, T. He, J. Yang, F. Qi, Q. Fu, X. Bao, Science 351 (2016) 1065.10.1126/science.aaf183526941314Search in Google Scholar

6. F. Holzmeier, M.-P. Herbert, I. Fischer, M. Steglich, A. Bodi, P. Hemberger, J. Anal. Appl. Pyrolysis 124 (2017) 454.10.1016/j.jaap.2017.02.020Search in Google Scholar

7. F. Qi, Proc. Combust. Inst. 34 (2013) 33.10.1016/j.proci.2012.09.002Search in Google Scholar

8. N. Hansen, T. A. Cool, P. R. Westmoreland, K. Kohse-Höinghaus, Prog. Energy Combust. Sci. 35 (2009) 168.10.1016/j.pecs.2008.10.001Search in Google Scholar

9. Z. S. Li, B. Li, Z. W. Sun, X. S. Bai, M. Aldén, Combust. Flame 157 (2010) 1087.10.1016/j.combustflame.2010.02.017Search in Google Scholar

10. K. Kohse-Höinghaus, Chem. Eur. J. 22 (2016) 13390.10.1002/chem.201602676Search in Google Scholar

11. T. Lu, C. K. Law, Prog. Energy Combust. Sci. 35 (2009) 192.10.1016/j.pecs.2008.10.002Search in Google Scholar

12. K. Moshammer, A. W. Jasper, D. M. Popolan-Vaida, Z. Wang, V. S. Bhavani Shankar, L. Ruwe, C. A. Taatjes, P. Dagaut, N. Hansen, J. Phys. Chem. A 120 (2016) 7890.10.1021/acs.jpca.6b06634Search in Google Scholar

13. J. Zádor, H. Huang, O. Welz, J. Zetterberg, D. L. Osborn, C. A. Taatjes, Phys. Chem. Chem. Phys. 15 (2013) 10753.2368967110.1039/c3cp51185eSearch in Google Scholar

14. Z. Wang, L. Zhang, K. Moshammer, D. M. Popolan-Vaida, V. S. Bhavani Shankar, A. Lucassen, C. Hemken, C. A. Taatjes, S. R. Leone, K. Kohse-Höinghaus, N. Hansen, P. Dagaut, S. M. Sarathy, Combust. Flame 164 (2016) 386.10.1016/j.combustflame.2015.11.035Search in Google Scholar

15. F. Battin-Leclerc, O. Herbinet, P.-A. Glaude, R. Fournet, Z. Zhou, L. Deng, H. Guo, M. Xie, F. Qi, Angew. Chem. Int. Ed. 49 (2010) 3169.10.1002/anie.200906850Search in Google Scholar

16. P. T. Lynch, T. P. Troy, M. Ahmed, R. S. Tranter, Anal. Chem. 87 (2015) 2345.10.1021/ac504163325594229Search in Google Scholar

17. L. Ruwe, K. Moshammer, N. Hansen, K. Kohse-Höinghaus, Combust. Flame 175 (2017) 34.10.1016/j.combustflame.2016.06.032Search in Google Scholar

18. L. Seidel, K. Moshammer, X. Wang, T. Zeuch, K. Kohse-Höinghaus, F. Mauss, Combust. Flame 162 (2015) 2045.10.1016/j.combustflame.2015.01.002Search in Google Scholar

19. Y. Li, F. Qi, Acc. Chem. Res. 43 (2010) 68.10.1021/ar900130b19705821Search in Google Scholar

20. N. Hansen, M. Schenk, K. Moshammer, K. Kohse-Höinghaus, Combust. Flame 180 (2017) 250.10.1016/j.combustflame.2016.09.013Search in Google Scholar

21. L. S. Tran, B. Sirjean, P. A. Glaude, R. Fournet, F. Battin-Leclerc, Energy 43 (2012) 4.10.1016/j.energy.2011.11.013Search in Google Scholar

22. S. S. Merchant, C. F. Goldsmith, A. G. Vandeputte, M. P. Burke, S. J. Klippenstein, W. H. Green, Combust. Flame 162 (2015) 3658.10.1016/j.combustflame.2015.07.005Search in Google Scholar

23. C.-W. Zhou, Y. Li, E. O’Connor, K. P. Somers, S. Thion, C. Keesee, O. Mathieu, E. L. Petersen, T. A. DeVerter, M. A. Oehlschlaeger, G. Kukkadapu, C.-J. Sung, M. Alrefae, F. Khaled, A. Farooq, P. Dirrenberger, P.-A. Glaude, F. Battin-Leclerc, J. Santner, Y. Ju, T. Held, F. M. Haas, F. L. Dryer, H. J. Curran, Combust. Flame 167 (2016) 353.10.1016/j.combustflame.2016.01.021Search in Google Scholar

24. S. M. Sarathy, P. Oßwald, N. Hansen, K. Kohse-Höinghaus, Prog. Energy Combust. Sci. 44 (2014) 40.10.1016/j.pecs.2014.04.003Search in Google Scholar

25. K. Kohse-Höinghaus, P. Oßwald, T. A. Cool, T. Kasper, N. Hansen, F. Qi, C. K. Westbrook, P. R. Westmoreland, Angew. Chem. Int. Ed. 49 (2010) 3572.10.1002/anie.200905335Search in Google Scholar

26. N. Hansen, T. Kasper, S. J. Klippenstein, P. R. Westmoreland, M. E. Law, C. A. Taatjes, K. Kohse-Höinghaus, J. Wang, T. A. Cool, J. Phys. Chem. A 111 (2007) 4081.1730018310.1021/jp0683317Search in Google Scholar

27. B. Brehm, E. von Puttkamer, Z. Naturforsch. A 22 (1967) 8.Search in Google Scholar

28. A. Bodi, B. Sztáray, T. Baer, M. Johnson, T. Gerber, Rev. Sci. Instrum. 78 (2007) 084102.10.1063/1.277601217764338Search in Google Scholar

29. A. T. J. B. Eppink, D. H. Parker, Rev. Sci. Instrum. 68 (1997) 3477.10.1063/1.1148310Search in Google Scholar

30. B. Sztáray, T. Baer, Rev. Sci. Instrum. 74 (2003) 3763.10.1063/1.1593788Search in Google Scholar

31. X. Tang, X. Zhou, M. Niu, S. Liu, J. Sun, X. Shan, F. Liu, L. Sheng, Rev. Sci. Instrum. 80 (2009) 113101.10.1063/1.325087219947711Search in Google Scholar

32. A. Bodi, P. Hemberger, T. Gerber, B. Sztáray, Rev. Sci. Instrum. 83 (2012) 083105.10.1063/1.474276922938272Search in Google Scholar

33. G. A. Garcia, B. K. Cunha de Miranda, M. Tia, S. Daly, L. Nahon, Rev. Sci. Instrum. 84 (2013) 053112.10.1063/1.480775123742537Search in Google Scholar

34. J. C. Poully, J. P. Schermann, N. Nieuwjaer, F. Lecomte, G. Grégoire, C. Desfrançois, G. A. Garcia, L. Nahon, D. Nandi, L. Poisson, M. Hochlaf, Phys. Chem. Chem. Phys. 12 (2010) 3566.2033625410.1039/b923630aSearch in Google Scholar

35. P. Bréchignac, G. A. Garcia, C. Falvo, C. Joblin, D. Kokkin, A. Bonnamy, P. Parneix, T. Pino, O. Pirali, G. Mulas, L. Nahon, J. Chem. Phys. 141 (2014) 164325.10.1063/1.490042725362317Search in Google Scholar

36. T. Baer, R. P. Tuckett, Phys. Chem. Chem. Phys. 19 (2017) 9698.2825214810.1039/C7CP00144DSearch in Google Scholar

37. A. Bodi, P. Hemberger, D. L. Osborn, B. Sztáray, J. Phys. Chem. Lett. 4 (2013) 2948.10.1021/jz401500cSearch in Google Scholar

38. P. Oßwald, P. Hemberger, T. Bierkandt, E. Akyildiz, M. Köhler, A. Bodi, T. Gerber, T. Kasper, Rev. Sci. Instrum. 85 (2014) 025101.10.1063/1.486117524593390Search in Google Scholar

39. X. Mercier, S. Batut, A. Faccinetto, G. Vanhove, A. El Bakali, P. Desgroux, D. Bozanic, G. Garcia, L. Nahon, Proc. 8th Eur. Combust. Meet. (2017) 529.Search in Google Scholar

40. J. Krüger, G. A. Garcia, D. Felsmann, K. Moshammer, A. Lackner, A. Brockhinke, L. Nahon, K. Kohse-Höinghaus, Phys. Chem. Chem. Phys. 16 (2014) 22791.2523778210.1039/C4CP02857KSearch in Google Scholar

41. D. Felsmann, A. Lucassen, J. Krüger, C. Hemken, L.-S. Tran, J. Pieper, G. A. Garcia, A. Brockhinke, L. Nahon, K. Kohse-Höinghaus, Z. Phys. Chem. 230 (2016) 1067.Search in Google Scholar

42. X. C. Lu, D. Han, Z. Huang, Prog. Energy Combust. Sci. 37 (2011) 741.10.1016/j.pecs.2011.03.003Search in Google Scholar

43. J.-B. Masurier, F. Foucher, G. Dayma, P. Dagaut, Proc. Combust. Inst. 35 (2015) 3125.10.1016/j.proci.2014.05.060Search in Google Scholar

44. M. Jia, M. Xie, Fuel 85 (2006) 2593.10.1016/j.fuel.2006.02.018Search in Google Scholar

45. C. K. Westbrook, W. J. Pitz, H. J. Curran, J. Phys. Chem. A 110 (2006) 6912.1672270610.1021/jp056362gSearch in Google Scholar

46. B.-Q. He, S.-J. Shuai, J.-X. Wang, H. He, Atmos. Environ. 37 (2003) 4965.10.1016/j.atmosenv.2003.08.029Search in Google Scholar

47. G. Fontaras, G. Karavalakis, M. Kousoulidou, L. Ntziachristos, E. Bakeas, S. Stournas, Z. Samaras, Environ. Pollut. 158 (2010) 2496.10.1016/j.envpol.2009.11.02120034715Search in Google Scholar

48. K. Zhang, K. Moshammer, P. Oßwald, K. Kohse-Höinghaus, Proc. Combust. Inst. 34 (2013) 763.10.1016/j.proci.2012.06.007Search in Google Scholar

49. F. Herrmann, P. Oßwald, K. Kohse-Höinghaus, Proc. Combust. Inst. 34 (2013) 771.10.1016/j.proci.2012.06.136Search in Google Scholar

50. J. Bugler, B. Marks, O. Mathieu, R. Archuleta, A. Camou, C. Grégoire, K. A. Heufer, E. L. Petersen, H. J. Curran, Combust. Flame 163 (2016) 138.10.1016/j.combustflame.2015.09.014Search in Google Scholar

51. L.-S. Tran, J. Pieper, H.-H. Carstensen, H. Zhao, I. Graf, Y. Ju, F. Qi, K. Kohse-Höinghaus, Proc. Combust. Inst. 36 (2017) 1165.10.1016/j.proci.2016.06.087Search in Google Scholar

52. K. Yasunaga, F. Gillespie, J. M. Simmie, H. J. Curran, Y. Kuraguchi, H. Hoshikawa, M. Yamane, Y. Hidaka, J. Phys. Chem. A 114 (2010) 9098.2069058810.1021/jp104070aSearch in Google Scholar

53. J. Hashimoto, K. Tanoue, N. Taide, Y. Nouno, Proc. Combust. Inst. 35 (2015) 973.10.1016/j.proci.2014.05.013Search in Google Scholar

54. X. Tang, G. A. Garcia, J.-F. Gil, L. Nahon, Rev. Sci. Instrum. 86 (2015) 123108.10.1063/1.493762426724007Search in Google Scholar

55. G. A. Garcia, L. Nahon, I. Powis, Rev. Sci. Instrum. 75 (2004) 4989.10.1063/1.1807578Search in Google Scholar

56. G. A. Garcia, H. Soldi-Lose, L. Nahon, Rev. Sci. Instrum. 80 (2009) 023102.10.1063/1.307933119256635Search in Google Scholar

57. L. Nahon, N. de Oliveira, G. A. Garcia, J.-F. Gil, B. Pilette, O. Marcouillé, B. Lagarde, F. Polack, J. Synchrotron Rad. 19 (2012) 508.10.1107/S0909049512010588Search in Google Scholar

58. R. J. Bartlett, M. Musiał, Rev. Mod. Phys. 79 (2007) 291.10.1103/RevModPhys.79.291Search in Google Scholar

59. G. Knizia, T. B. Adler, H.-J. Werner, J. Chem. Phys. 130 (2009) 054104.10.1063/1.305430019206955Search in Google Scholar

60. T. E. Sharp, H. M. Rosenstock, J. Chem. Phys. 41 (1964) 3453.10.1063/1.1725748Search in Google Scholar

61. H.-J. Werner, P. J. Knowles, G. Knizia, M. Manby, M. Schütz, MOLPRO Version 2009 (2009).Search in Google Scholar

62. LOGE Lund Combustion Engineering, LOGEsoft v1.08 (2016).Search in Google Scholar

63. U. Struckmeier, P. Oßwald, T. Kasper, L. Böhling, M. Heusing, M. Köhler, A. Brockhinke, K. Kohse-Höinghaus, Z. Phys. Chem. 223 (2009) 503.10.1524/zpch.2009.6049Search in Google Scholar

64. L.-S. Tran, J. Pieper, M. Zeng, Y. Li, X. Zhang, W. Li, I. Graf, F. Qi, K. Kohse-Höinghaus, Combust. Flame 175 (2017) 47.10.1016/j.combustflame.2016.06.031Search in Google Scholar

65. X. Yang, D. Felsmann, N. Kurimoto, J. Krüger, T. Wada, T. Tan, E. A. Carter, K. Kohse-Höinghaus, Y. Ju, Proc. Combust. Inst. 35 (2015) 491.10.1016/j.proci.2014.05.058Search in Google Scholar

66. P.-O. Löwdin, Rev. Mod. Phys. 35 (1963) 496.10.1103/RevModPhys.35.496Search in Google Scholar

67. J. Paldus, A. Veillard, Mol. Phys. 35 (1978) 445.10.1080/00268977800100331Search in Google Scholar

68. E. R. Davidson, W. T. Borden, J. Phys. Chem. 87 (1983) 4783.10.1021/j150642a005Search in Google Scholar

69. W. Eisfeld, K. Morokuma, J. Chem. Phys. 113 (2000) 5587.10.1063/1.1290607Search in Google Scholar

70. T. Shiozaki, G. Knizia, H.-J. Werner, J. Chem. Phys. 134 (2011) 034113.2126133610.1063/1.3528720Search in Google Scholar

71. T. Shiozaki, H.-J. Werner, J. Chem. Phys. 134 (2011) 184104.10.1063/1.358763221568494Search in Google Scholar

72. F. P. Lossing, J. C. Traeger, J. Am. Chem. Soc. 97 (1975) 1579.10.1021/ja00839a053Search in Google Scholar

73. N. Hansen, S. J. Klippenstein, J. A. Miller, J. Wang, T. A. Cool, M. E. Law, P. R. Westmoreland, T. Kasper, K. Kohse-Höinghaus, J. Phys. Chem. A 110 (2006) 4376.1657104110.1021/jp0569685Search in Google Scholar

74. F. P. Lossing, J. C. Traeger, Int. J. Mass Spectrom. Ion Phys. 19 (1976) 9.10.1016/0020-7381(76)83002-1Search in Google Scholar

75. S. Pignataro, A. Cassuto, F. P. Lossing, J. Am. Chem. Soc. 89 (1967) 3693.10.1021/ja00991a004Search in Google Scholar

76. G. Bieri, F. Burger, E. Heilbronner, J. P. Maier, Helv. Chim. Acta 60 (1977) 2213.10.1002/hlca.19770600714Search in Google Scholar

77. J. C. Traeger, J. Phys. Chem. 90 (1986) 4114.10.1021/j100408a055Search in Google Scholar

78. P. Masclet, G. Mouvier, J. F. Bocquet, J. Chim. Phys. 78 (1981) 99.10.1051/jcp/1981780099Search in Google Scholar

79. M. Newville, T. Stensitzki, D. B. Allen, A. Ingargiola, LMFIT: Non-Linear Least-Square Minimization and Curve-Fitting for Python, http://dx.doi.org/10.5281/zenodo.11813 (2014).Search in Google Scholar

80. B. Yang, J. Wang, T. A. Cool, N. Hansen, S. Skeen, D. L. Osborn, Int. J. Mass Spectrom. 309 (2012) 118.10.1016/j.ijms.2011.09.006Search in Google Scholar

81. T. A. Cool, J. Wang, K. Nakajima, C. A. Taatjes, A. Mcllroy, Int. J. Mass Spectrom. 247 (2005) 18.10.1016/j.ijms.2005.08.018Search in Google Scholar

82. J. Wang, B. Yang, T. A. Cool, N. Hansen, T. Kasper, Int. J. Mass Spectrom. 269 (2008) 210.10.1016/j.ijms.2007.10.013Search in Google Scholar

83. F. Paulot, J. D. Crounse, H. G. Kjaergaard, J. H. Kroll, J. H. Seinfeld, P. O. Wennberg, Atmos. Chem. Phys. 9 (2009) 1479.10.5194/acp-9-1479-2009Search in Google Scholar

84. G. Martins, A. M. Ferreira-Rodrigues, F. N. Rodrigues, G. G. B. de Souza, N. J. Mason, S. Eden, D. Duflot, J.-P. Flament, S. V. Hoffmann, J. Delwiche, M.-J. Hubin-Franskin, P. Limão-Vieira, Phys. Chem. Chem. Phys. 11 (2009) 11219.10.1039/b916620c20024391Search in Google Scholar

85. T. Adam, R. Zimmermann, Anal. Bioanal. Chem. 389 (2007) 1941.10.1007/s00216-007-1571-x17874081Search in Google Scholar

86. A. Lucassen, K. Zhang, J. Warkentin, K. Moshammer, P. Glarborg, P. Marshall, K. Kohse-Höinghaus, Combust. Flame 159 (2012) 2254.10.1016/j.combustflame.2012.02.024Search in Google Scholar

87. A. Lucassen, P. Oßwald, U. Struckmeier, K. Kohse-Höinghaus, T. Kasper, N. Hansen, T. A. Cool, P. R. Westmoreland, Proc. Combust. Inst. 32 (2009) 1269.10.1016/j.proci.2008.06.053Search in Google Scholar

88. J.-P. Morizur, J. Mercier, M. Sarraf, Org. Mass Spectrom. 17 (1982) 327.10.1002/oms.1210170708Search in Google Scholar

89. J. L. Holmes, F. P. Lossing, Can. J. Chem. 60 (1982) 2365.10.1139/v82-338Search in Google Scholar

90. J. M. Behan, F. M. Dean, R. A. W. Johnstone, Tetrahedron 32 (1976) 167.10.1016/0040-4020(76)80038-5Search in Google Scholar

91. J. L. Holmes, F. P. Lossing, P. C. Burgers, Int. J. Mass Spectrom. Ion Phys. 47 (1983) 133.10.1016/0020-7381(83)87154-XSearch in Google Scholar

92. J. C. Traeger, D. J. McAdoo, Int. J. Mass Spectrom. Ion Process. 68 (1986) 35.10.1016/0168-1176(86)87066-5Search in Google Scholar

93. J. C. Traeger, Org. Mass Spectrom. 20 (1985) 223.10.1002/oms.1210200311Search in Google Scholar

94. M. J. S. Dewar, S. D. Worley, J. Chem. Phys. 50 (1969) 654.10.1063/1.1671114Search in Google Scholar

Supplemental Material:

The online version of this article offers supplementary material (https://doi.org/10.1515/zpch-2017-1009).

Received: 2017-7-11
Accepted: 2017-8-31
Published Online: 2017-10-23
Published in Print: 2018-2-23

©2018 Walter de Gruyter GmbH, Berlin/Boston