Abstract
Metallic nanoparticles have been used as catalysts for various reactions, and the huge literature on the subject is hard to overlook. In many applications, the nanoparticles must be affixed to a colloidal carrier for easy handling during catalysis. These “passive carriers” (e.g. dendrimers) serve for a controlled synthesis of the nanoparticles and prevent coagulation during catalysis. Recently, hybrids from nanoparticles and polymers have been developed that allow us to change the catalytic activity of the nanoparticles by external triggers. In particular, single nanoparticles embedded in a thermosensitive network made from poly(N-isopropylacrylamide) (PNIPAM) have become the most-studied examples of such hybrids: immersed in cold water, the PNIPAM network is hydrophilic and fully swollen. In this state, hydrophilic substrates can diffuse easily through the network, and react at the surface of the nanoparticles. Above the volume transition located at 32°C, the network becomes hydrophobic and shrinks. Now hydrophobic substrates will preferably diffuse through the network and react with other substrates in the reaction catalyzed by the enclosed nanoparticle. Such “active carriers”, may thus be viewed as true nanoreactors that open new ways for the use of nanoparticles in catalysis. In this review, we give a survey on recent work done on these hybrids and their application in catalysis. The aim of this review is threefold: we first review hybrid systems composed of nanoparticles and thermosensitive networks and compare these “active carriers” to other colloidal and polymeric carriers (e.g. dendrimers). In a second step we discuss the model reactions used to obtain precise kinetic data on the catalytic activity of nanoparticles in various carriers and environments. These kinetic data allow us to present a fully quantitative comparison of different nanoreactors. In a final section we shall present the salient points of recent efforts in the theoretical modeling of these nanoreactors. By accounting for the presence of a free-energy landscape for the reactants’ diffusive approach towards the catalytic nanoparticle, arising from solvent-reactant and polymeric shell-reactant interactions, these models are capable of explaining the emergence of all the important features observed so far in studies of nanoreactors. The present survey also suggests that such models may be used for the design of future carrier systems adapted to a given reaction and solvent.
Dedicated to: Eckart Rühl on the occasion of his 60th birthday.
Acknowledgment
S.A-U. acknowledges financial support from the Beijing Municipal Government Innovation Center for Soft Matter Science and Engineering, as well as the Humboldt Foundation via a Postdoctoral Research Fellowship. J.D. and R.R. acknowledge funding by the ERC (European Research Council) Consolidator Grant with project number 646659–NANOREACTOR. F.P. acknowledges support from the French CNRS under the PICS scheme. All authors acknowledge useful discussions with Daniel Besold, Won Kyu Kim, and Matej Kanduc.
References
1. D. Astruc, in: D. Astruc (Ed.), Nanoparticles and Catalysis, Wiley-VCH Verlag GmbH, Weinheim, Germany (2008), P. 1.Search in Google Scholar
2. V. V. Pushkarev, Z. Zhu, K. An, A. Hervier, G. A. Somorjai, Top. Catal. 55 (2012) 1257.10.1007/s11244-012-9915-ySearch in Google Scholar
3. K. Na, Q. Zhang, G. A. Somorjai, J. Clust. Sci. 25 (2013) 83.10.1007/s10876-013-0636-6Search in Google Scholar
4. E. Gross, G. A. Somorjai, Top. Catal. 57 (2014) 812.10.1007/s11244-014-0243-2Search in Google Scholar
5. R. Ferrando, J. Jellinek, R. L. Johnston, Chem. Rev. 108 (2008) 845.10.1021/cr040090gSearch in Google Scholar PubMed
6. M. Haruta, Chem. Rec. 3 (2003) 75.10.1002/tcr.10053Search in Google Scholar PubMed
7. G. J. Hutchings, M. Haruta, Appl. Catal., A. 291 (2005) 2.10.1016/j.apcata.2005.05.044Search in Google Scholar
8. Y. Zhang, X. Cui, F. Shi, Y. Deng, Chem. Rev. 112 (2012) 2467.10.1021/cr200260mSearch in Google Scholar PubMed
9. P. Zhao, N. Li, D. Astruc, Coord. Chem. Rev. 257 (2013) 638.10.1016/j.ccr.2012.09.002Search in Google Scholar
10. N. Li, P. Zhao, D. Astruc, Angew. Chem.-Int. Ed. 53 (2014) 1756.10.1002/anie.201300441Search in Google Scholar PubMed
11. E. Boisselier, D. Astruc, Chem. Soc. Rev. 38 (2009) 1759.10.1039/b806051gSearch in Google Scholar PubMed
12. U. Taylor, C. Rehbock, C. Streich, D. Rath, S. Barcikowski, Nanomedicine (Lond). 9 (2014) 1971.10.2217/nnm.14.139Search in Google Scholar PubMed
13. G. Sharma, M. Ballauff, Macromol. Rapid Commun. 25 (2004) 547.10.1002/marc.200300107Search in Google Scholar
14. Y. Mei, G. Sharma, Y. Lu, M. Ballauff, M. Drechsler, T. Irrgang, R. Kempe, Langmuir 21 (2005) 12229.10.1021/la052120wSearch in Google Scholar PubMed
15. N. C. Antonels, R. Meijboom, Langmuir 29 (2013) 13433.10.1021/la402885kSearch in Google Scholar PubMed
16. R. M. Crooks, M. Zhao, L. Sun, V. Chechik, L. K. Yeung, Acc. Chem. Res. 34 (2001) 181.10.1021/ar000110aSearch in Google Scholar PubMed
17. R. M. Anderson, D. F. Yancey, L. Zhang, S. T. Chill, G. Henkelman, R. M. Crooks, Acc. Chem. Res. 48 (2015) 1351.10.1021/acs.accounts.5b00125Search in Google Scholar PubMed
18. C. Deraedt, N. Pinaud, D. Astruc, J. Am. Chem. Soc. 136 (2014) 12092.10.1021/ja5061388Search in Google Scholar PubMed
19. K. Esumi, K. Miyamoto, T. Yoshimura, J. Colloid Interface Sci. 254 (2002) 402.10.1006/jcis.2002.8580Search in Google Scholar PubMed
20. M. Nemanashi, R. Meijboom, J. Colloid Interface Sci. 389 (2013) 260.10.1016/j.jcis.2012.09.012Search in Google Scholar PubMed
21. N. Bingwa, R. Meijboom, J. Phys. Chem. C 118 (2014) 19849.10.1021/jp505571pSearch in Google Scholar
22. N. Bingwa, R. Meijboom, J. Mol. Catal. A Chem. 396 (2015) 1.10.1016/j.molcata.2014.09.019Search in Google Scholar
23. J.-H. Noh, R. Meijboom, Appl. Surf. Sci. 320 (2014) 400.10.1016/j.apsusc.2014.09.058Search in Google Scholar
24. J.-H. Noh, R. Meijboom, Appl. Catal. A Gen. 497 (2015) 107.10.1016/j.apcata.2015.02.039Search in Google Scholar
25. Z. D. Pozun, S. E. Rodenbusch, E. Keller, K. Tran, W. Tang, K. J. Stevenson, G. Henkelman, J. Phys. Chem. C. Nanomater. Interfaces 117 (2013) 7598.10.1021/jp312588uSearch in Google Scholar PubMed PubMed Central
26. J. A. Johnson, J. J. Makis, K. A. Marvin, S. E. Rodenbusch, K. J. Stevenson, J. Phys. Chem. C 117 (2013) 22644.10.1021/jp4041474Search in Google Scholar
27. A. Calvo, M. C. Fuertes, B. Yameen, F. J. Williams, O. Azzaroni, G. J. A. A. Soler-Illia, Langmuir 26 (2010) 5559.10.1021/la9038304Search in Google Scholar PubMed
28. S. L. Brock, N. Duan, Z. R. Tian, O. Giraldo, H. Zhou, S. L. Suib, Chem. Mater. 10 (1998) 2619.10.1021/cm980227hSearch in Google Scholar
29. M. Ballauff, O. Borisov, Curr. Opin. Colloid Interface Sci. 11 (2006) 316.10.1016/j.cocis.2006.12.002Search in Google Scholar
30. M. Ballauff, Prog. Polym. Sci. (Oxford) 32 (2007) 1135.10.1016/j.progpolymsci.2007.05.002Search in Google Scholar
31. J. Cao, S. Mei, H. Jia, A. Ott, M. Ballauff, Y. Lu, Langmuir 31 (2015) 9483.10.1021/acs.langmuir.5b02279Search in Google Scholar PubMed
32. Y. Lu, Y. Mei, M. Drechsler, M. Ballauff, Angew. Chemie – Int. Ed. 45 (2006) 813.10.1002/anie.200502731Search in Google Scholar PubMed
33. Y. Lu, M. Hoffmann, R. S. Yelamanchili, A. Terrenoire, M. Schrinner, M. Drechsler, M. W. Möller, J. Breu, M. Ballauff, Macromol. Chem. Phys. 210 (2009) 377.10.1002/macp.200800608Search in Google Scholar
34. M. Ballauff, Y. Lu, Polymer (Guildf). 48 (2007) 1815.10.1016/j.polymer.2007.02.004Search in Google Scholar
35. Y. Lu, S. Proch, M. Schrinner, M. Drechsler, R. Kempe, M. Ballauff, J. Mater. Chem. 19 (2009) 3955.10.1039/b822673nSearch in Google Scholar
36. S. Wu, J. Dzubiella, J. Kaiser, M. Drechsler, X. Guo, M. Ballauff, Y. Lu, Angew. Chemie – Int. Ed. 51 (2012) 2229.10.1002/anie.201106515Search in Google Scholar PubMed
37. P. Hervés, M. Pérez-Lorenzo, L. M. Liz-Marzán, J. Dzubiella, Y. Lu, M. Ballauff, Chem. Soc. Rev. 41 (2012) 5577.10.1039/c2cs35029gSearch in Google Scholar PubMed
38. S. Wu, J. Kaiser, X. Guo, L. Li, Y. Lu, M. Ballauff, Ind. Eng. Chem. Res. 51 (2012) 5608.10.1021/ie2025147Search in Google Scholar
39. A. Lu, R. K. O’Reilly, Curr. Opin. Biotechnol. 24 (2013) 639.10.1016/j.copbio.2012.11.013Search in Google Scholar PubMed
40. K. Renggli, P. Baumann, K. Langowska, O. Onaca, N. Bruns, W. Meier, Adv. Funct. Mater. 21 (2011) 1241.10.1002/adfm.201001563Search in Google Scholar
41. J. Gaitzsch, X. Huang, B. Voit, Chem. Rev. 116 (2016) 1053.10.1021/acs.chemrev.5b00241Search in Google Scholar PubMed
42. M. Resmini, K. Flavin, D. Carboni, Top. Curr. Chem. 325 (2012) 307.10.1007/128_2010_93Search in Google Scholar PubMed
43. H. Jia, D. Schmitz, A. Ott, A. Pich, Y. Lu, J. Mater. Chem. A 3 (2015) 6187.10.1039/C5TA00197HSearch in Google Scholar
44. A. Liu, C. H.-H. Traulsen, J. J. L. M. Cornelissen, ACS Catal. 6 (2016) 3084.10.1021/acscatal.6b00106Search in Google Scholar
45. Y. Lu, Y. Mei, M. Ballauff, M. Drechsler, J. Phys. Chem. B 110 (2006) 3930.10.1021/jp057149nSearch in Google Scholar PubMed
46. S. Shi, Q. Wang, T. Wang, S. Ren, Y. Gao, N. Wang, J. Phys. Chem. B 118 (2014) 7177.10.1021/jp5027477Search in Google Scholar PubMed
47. A. Chang, Q. Wu, W. Xu, J. Xie, W. Wu, Chem. Commun. 51 (2015) 10502.10.1039/C5CC03543KSearch in Google Scholar PubMed
48. L.-Q. Yang, M.-M. Hao, H.-Y. Wang, Y. Zhang, Colloid Polym. Sci. 293 (2015) 2405.10.1007/s00396-015-3642-4Search in Google Scholar
49. J. Liu, J. Wang, Y. Wang, C. Liu, M. Jin, Y. Xu, L. Li, X. Guo, A. Hu, T. Liu, S. F. Lincoln, R. K. Prud’homme, Colloids Interface Sci. Commun. 4 (2015) 1.10.1016/j.colcom.2014.12.001Search in Google Scholar
50. Y. Tang, T. Wu, B. Hu, Q. Yang, L. Liu, B. Yu, Y. Ding, S. Ye, Mater. Chem. Phys. 149–150 (2015) 460.10.1016/j.matchemphys.2014.10.045Search in Google Scholar
51. J. Plazas-Tuttle, L. Rowles, H. Chen, J. Bisesi, T. Sabo-Attwood, N. Saleh, Nanomaterials 5 (2015) 1102.10.3390/nano5021102Search in Google Scholar PubMed PubMed Central
52. Q. Wu, H. Cheng, A. Chang, W. Xu, F. Lu, W. Wu, Chem. Commun. 51 (2015) 16068.10.1039/C5CC06386HSearch in Google Scholar
53. F. A. Plamper, W. Richtering, Acc. Chem. Res. 50 (2017) 131.10.1021/acs.accounts.6b00544Search in Google Scholar PubMed
54. Y. Mei, Y. Lu, F. Polzer, M. Ballauff, M. Drechsler, Chem. Mater. 19 (2007) 1062.10.1021/cm062554sSearch in Google Scholar
55. S. Carregal-Romero, N. J. Buurma, J. Pérez-Juste, L. M. Liz-Marzán, P. Hervés, Chem. Mater. 22 (2010) 3051.10.1021/cm903261bSearch in Google Scholar
56. J. Zeng, Q. Zhang, J. Chen, Y. Xia, Nano Lett. 10 (2010) 30.10.1021/nl903062eSearch in Google Scholar PubMed
57. Z. Chen, Z.-M. Cui, C.-Y. Cao, W.-D. He, L. Jiang, W.-G. Song, Langmuir 28 (2012) 13452.10.1021/la3022535Search in Google Scholar PubMed
58. M. Koenig, F. Simon, P. Formanek, M. Müller, S. Gupta, M. Stamm, P. Uhlmann, Macromol. Chem. Phys. 214 (2013) 2301.10.1002/macp.201300258Search in Google Scholar
59. A. Lu, D. Moatsou, I. Hands-Portman, D. A. Longbottom, R. K. O’Reilly, ACS Macro Lett. 3 (2014) 1235.10.1021/mz500704ySearch in Google Scholar PubMed
60. G. Liu, D. Wang, F. Zhou, W. Liu, Small 11 (2015) 2807.10.1002/smll.201403305Search in Google Scholar PubMed
61. M. Horecha, E. Kaul, A. Horechyy, M. Stamm, J. Mater. Chem. A 2 (2014) 7431.10.1039/C4TA00606BSearch in Google Scholar
62. H. Jia, R. Roa, S. Angioletti-uberti, K. Henzler, A. Ott, X. Lin, J. Möser, Z. Kochovski, A. Schnegg, J. Dzubiella, M. Ballauff, Y. Lu, J. Mater. Chem. A 4 (2016) 9677.10.1039/C6TA03528KSearch in Google Scholar
63. N. Pradhan, A. Pal, T. Pal, Colloids Surf. A Physicochem. Eng. Asp. 196 (2002) 247.10.1016/S0927-7757(01)01040-8Search in Google Scholar
64. T. Aditya, A. Pal, T. Pal, Chem. Commun. (Camb). 51 (2015) 9410.10.1039/C5CC01131KSearch in Google Scholar PubMed
65. P. Zhao, X. Feng, D. Huang, G. Yang, D. Astruc, Coord. Chem. Rev. 287 (2015) 114.10.1016/j.ccr.2015.01.002Search in Google Scholar
66. S. Wunder, Y. Lu, M. Albrecht, M. Ballauff, ACS Catal. 1 (2011) 908.10.1021/cs200208aSearch in Google Scholar
67. S. Angioletti-Uberti, Y. Lu, M. Ballauff, J. Dzubiella, J. Phys. Chem. C 119 (2015) 15723.10.1021/acs.jpcc.5b03830Search in Google Scholar
68. R. Roa, W. K. Kim, M. Kanduč, J. Dzubiella, S. Angioletti-Uberti, ACS Catal. 7 (2017) 5604.10.1021/acscatal.7b01701Search in Google Scholar PubMed PubMed Central
69. M. Kanduč, R. Chudoba, K. Palczynski, W. K. Kim, R. Roa, J. Dzubiella, Phys. Chem. Chem. Phys. 19 (2017) 5906.10.1039/C6CP08366HSearch in Google Scholar PubMed
70. W. K. Kim, A. Moncho-Jordá, R. Roa, M. Kanduč, J. Dzubiella, Macromolecules 50 (2017) 6227.10.1021/acs.macromol.7b01206Search in Google Scholar
71. Y. Li, M. A. El-Sayed, J. Phys. Chem. B 105 (2001) 8938.10.1021/jp010904mSearch in Google Scholar
72. C. A. Stowell, B. A. Korgel, Nano Lett. 5 (2005) 1203.10.1021/nl050648fSearch in Google Scholar PubMed
73. K. Y. Lee, Y. W. Lee, J.-H. Lee, S. W. Han, Colloids Surf. A Physicochem. Eng. Asp. 372 (2010) 146.10.1016/j.colsurfa.2010.10.019Search in Google Scholar
74. R. Ciganda, N. Li, C. Deraedt, S. Gatard, P. Zhao, L. Salmon, R. Hernández, J. Ruiz, D. Astruc, Chem. Commun. (Camb). 50 (2014) 10126.10.1039/C4CC04454ASearch in Google Scholar PubMed
75. R. M. Crooks, M. Zhao, L. L. Sun, V. Chechik, L. K. Yeung, Acc. Chem. Res. 34 (2001) 181.10.1021/ar000110aSearch in Google Scholar PubMed
76. Y. Niu, R. M. Crooks, Chem. Mater. 15 (2003) 3463.10.1021/cm034172hSearch in Google Scholar
77. R. W. J. Scott, O. M. Wilson, R. M. Crooks, Chem. Mater. 16 (2004) 5682.10.1021/cm049279zSearch in Google Scholar
78. R. W. J. Scott, O. M. Wilson, R. M. Crooks, J. Phys. Chem. B 109 (2005) 692.10.1021/jp0469665Search in Google Scholar PubMed
79. V. S. Myers, M. G. Weir, E. V. Carino, D. F. Yancey, S. Pande, R. M. Crooks, Chem. Sci. 2 (2011) 1632.10.1039/c1sc00256bSearch in Google Scholar
80. C. Deraedt, D. Astruc, Acc. Chem. Res. 47 (2014) 494.10.1021/ar400168sSearch in Google Scholar PubMed
81. H. Ye, R. W. J. Scott, R. M. Crooks, Langmuir 20 (2004) 2915.10.1021/la0361060Search in Google Scholar PubMed
82. L. Chen, W. Cao, P. J. Quinlan, R. M. Berry, K. C. Tam, ACS Sustain. Chem. Eng. 3 (2015) 978.10.1021/acssuschemeng.5b00110Search in Google Scholar
83. J. Düring, W. Alex, A. Zika, R. Branscheid, E. Spiecker, F. Gröhn, Macromolecules 50 (2017) 6998.10.1021/acs.macromol.7b00752Search in Google Scholar
84. X. Liu, D. Gregurec, J. Irigoyen, A. Martinez, S. Moya, R. Ciganda, P. Hermange, J. Ruiz, D. Astruc, Nat. Commun. 7 (2016) 13152.10.1038/ncomms13152Search in Google Scholar PubMed PubMed Central
85. A. O. Moughton, R. K. O’Reilly, J. Am. Chem. Soc. 130 (2008) 8714.10.1021/ja800230kSearch in Google Scholar PubMed
86. D.-H. Chen, S.-H. Wu, Chem. Mater. 12 (2000) 1354.10.1021/cm991167ySearch in Google Scholar
87. G. Kocak, V. Bütün, Colloid Polym. Sci. 293 (2015) 3563.10.1007/s00396-015-3727-0Search in Google Scholar
88. P. Zheng, X. Jiang, X. Zhang, W. Zhang, L. Shi, Langmuir 22 (2006) 9393.10.1021/la0609064Search in Google Scholar PubMed
89. Y. Wang, G. Wei, W. Zhang, X. Jiang, P. Zheng, L. Shi, A. Dong, J. Mol. Catal. A Chem. 266 (2007) 233.10.1016/j.molcata.2006.11.014Search in Google Scholar
90. X. Jiang, G. Wei, X. Zhang, W. Zhang, P. Zheng, F. Wen, L. Shi, J. Mol. Catal. A Chem. 277 (2007) 102.10.1016/j.molcata.2007.07.021Search in Google Scholar
91. G. Sharma, Y. Mei, Y. Lu, M. Ballauff, T. Irrgang, S. Proch, R. Kempe, J. Catal. 246 (2007) 10.10.1016/j.jcat.2006.11.016Search in Google Scholar
92. Y. Lu, Y. Mei, M. Schrinner, M. Ballauff, M. W. Möller, J. Breu, J. Phys. Chem. C 111 (2007) 7676.10.1021/jp070973mSearch in Google Scholar
93. S. Proch, Y. Mei, J. M. Rivera Villanueva, Y. Lu, A. Karpov, M. Ballauff, R. Kempe, Adv. Synth. Catal. 350 (2008) 493.10.1002/adsc.200700422Search in Google Scholar
94. M. Schrinner, M. Ballauff, Y. Talmon, Y. Kauffmann, J. Thun, M. Möller, J. Breu, Science 323 (2009) 617.10.1126/science.1166703Search in Google Scholar PubMed
95. S. Wu, Z. Zhu, T. Siepenkötter, X. Guo, Asia-Pacific J. Chem. Eng. 7 (2012) 886.10.1002/apj.655Search in Google Scholar
96. S. Huang, X. Yu, Y. Dong, L. Li, X. Guo, Colloids Surf. A Physicochem. Eng. Asp. 415 (2012) 22.10.1016/j.colsurfa.2012.09.004Search in Google Scholar
97. Y. Lu, M. Ballauff, Prog. Polym. Sci. 59 (2016) 86.10.1016/j.progpolymsci.2016.03.002Search in Google Scholar
98. B. H. Juarez, L. M. Liz-Marzán, Zeitschrift für Phys. Chemie 229 (2015) 263.10.1515/zpch-2014-0578Search in Google Scholar
99. H. Jia, J. Cao, Y. Lu, Curr. Opin. Green Sustain. Chem. 4 (2017) 16.10.1016/j.cogsc.2017.02.002Search in Google Scholar
100. Y. Lu, A. Wittemann, M. Ballauff, M. Drechsler, Macromol. Rapid Commun. 27 (2006) 1137.10.1002/marc.200600190Search in Google Scholar
101. Y. Lu, M. Ballauff, Prog. Polym. Sci. 36 (2011) 767.10.1016/j.progpolymsci.2010.12.003Search in Google Scholar
102. S. S. Satapathy, P. Bhol, A. Chakkarambath, J. Mohanta, K. Samantaray, S. K. Bhat, S. K. Panda, P. S. Mohanty, S. Si, Appl. Surf. Sci. 420 (2017) 753.10.1016/j.apsusc.2017.05.172Search in Google Scholar
103. S. Li, D. Lin, J. Zhou, L. Zha, J. Phys. Chem. C 120 (2016) 4902.10.1021/acs.jpcc.5b11724Search in Google Scholar
104. S. Carregal-Romero, J. Pérez-Juste, P. Hervés, L. M. Liz-Marzán, P. Mulvaney, Langmuir, 26 (2010) 1271.10.1021/la902442pSearch in Google Scholar PubMed
105. D. Wang, B. Liu, J. Lü, C. Lü, RSC Adv. 6 (2016) 37487.10.1039/C6RA02885CSearch in Google Scholar
106. A. Chen, J. Qi, Q. Zhao, Y. Li, G. Zhang, F. Zhang, X. Fan, RSC Adv. 3 (2013) 8973.10.1039/c3ra40718gSearch in Google Scholar
107. Q. Zhang, I. Lee, J. Ge, F. Zaera, Y. Yin, Adv. Funct. Mater. 20 (2010) 2201.10.1002/adfm.201000428Search in Google Scholar
108. R. Purbia, S. Paria, Nanoscale 7 (2015) 19789.10.1039/C5NR04729CSearch in Google Scholar PubMed
109. Z. Chen, Z.-M. Cui, F. Niu, L. Jiang, W.-G. Song, Chem. Commun. (Camb). 46 (2010) 6524.10.1039/c0cc01786hSearch in Google Scholar PubMed
110. S. Cao, J. Chen, Y. Ge, L. Fang, Y. Zhang, A. P. F. Turner, Chem. Commun. (Camb). 50 (2014) 118.10.1039/C3CC47361ASearch in Google Scholar
111. Z.-M. Cui, Z. Chen, C.-Y. Cao, L. Jiang, W.-G. Song, Chem. Commun. (Camb). 49 (2013) 2332.10.1039/c3cc38649jSearch in Google Scholar PubMed
112. C. H. Lin, X. Liu, S. H. Wu, K. H. Liu, C. Y. Mou, J. Phys. Chem. Lett. 2 (2011) 2984.10.1021/jz201336hSearch in Google Scholar
113. B. Dai, F. Polzer, I. Häusler, Y. Lu, Zeitschrift für Phys. Chemie 226 (2012) 827.10.1524/zpch.2012.0262Search in Google Scholar
114. I. Nongwe, G. Bepete, A. Shaikjee, V. Ravat, B. Terfassa, R. Meijboom, N. J. Coville, Catal. Commun. 53 (2014) 77.10.1016/j.catcom.2014.05.001Search in Google Scholar
115. M. Horecha, V. Senkovskyy, M. Stamm, A. Kiriy, Macromolecules 42 (2009) 5811.10.1021/ma9008934Search in Google Scholar
116. C. Rehbock, J. Jakobi, L. Gamrad, S. van der Meer, D. Tiedemann, U. Taylor, W. Kues, D. Rath, S. Barcikowski, Beilstein J. Nanotechnol. 5 (2014) 1523.10.3762/bjnano.5.165Search in Google Scholar PubMed PubMed Central
117. S. Barcikowski, G. Compagnini, Phys. Chem. Chem. Phys. 15 (2013) 3022.10.1039/C2CP90132CSearch in Google Scholar PubMed
118. G. Marzun, J. Nakamura, X. Zhang, S. Barcikowski, P. Wagener, Appl. Surf. Sci. 348 (2015) 75.10.1016/j.apsusc.2015.01.108Search in Google Scholar
119. S. Gu, J. Kaiser, G. Marzun, A. Ott, Y. Lu, M. Ballauff, A. Zaccone, S. Barcikowski, P. Wagener, Catal. Lett. 145 (2015) 1105.10.1007/s10562-015-1514-7Search in Google Scholar
120. A. K. Diallo, C. Ornelas, L. Salmon, J. Ruiz Aranzaes, D. Astruc, Angew. Chem. Int. Ed. Engl. 46 (2007) 8644.10.1002/anie.200703067Search in Google Scholar PubMed
121. N. P. B. Tan, C. H. Lee, in: I. Karamé (Ed.), Environment-Friendly Approach in the Synthesis of Metal/Polymeric Nanocomposite Particles and their Catalytic Activities on the Reduction of p-Nitrophenol to p-Aminophenol, Green Chemical Processing and Synthesis, InTech, London, UK (2017), P. 91–117.Search in Google Scholar
122. F. Haber, Z. Elektrochem. 22 (1898) 506.Search in Google Scholar
123. A. Corma, P. Serna, Science 313 (2006) 332.10.1126/science.1128383Search in Google Scholar PubMed
124. H.-U. Blaser, Science 313 (2006) 312.10.1126/science.1131574Search in Google Scholar PubMed
125. K. Layek, M. L. Kantam, M. Shirai, D. Nishio-Hamane, T. Sasaki, H. Maheswaran, Green Chem. 14 (2012) 3164.10.1039/c2gc35917kSearch in Google Scholar
126. S. Wunder, F. Polzer, Y. Lu, Y. Mei, M. Ballauff, J. Phys. Chem. C 114 (2010) 8814.10.1021/jp101125jSearch in Google Scholar
127. S. Gu, S. Wunder, Y. Lu, M. Ballauff, R. Fenger, K. Rademann, B. Jaquet, A. Zaccone, J. Phys. Chem. C 118 (2014) 18618.10.1021/jp5060606Search in Google Scholar
128. M. A. Mahmoud, B. Garlyyev, M. A. El-Sayed, J. Phys. Chem. C 117 (2013) 21886.10.1021/jp4079234Search in Google Scholar
129. R. Fenger, E. Fertitta, H. Kirmse, A. F. Thünemann, K. Rademann, Phys. Chem. Chem. Phys. 14 (2012) 9343.10.1039/c2cp40792bSearch in Google Scholar PubMed
130. M. M. Nigra, J.-M. Ha, A. Katz, Catal. Sci. Technol. 3 (2013) 2976.10.1039/c3cy00298eSearch in Google Scholar
131. K. O. de Santos, W. C. Elias, A. M. Signori, F. C. Giacomelli, H. Yang, J. B. Domingos, J. Phys. Chem. C 116 (2012) 4594.10.1021/jp2087169Search in Google Scholar
132. B. Baruah, G. J. Gabriel, M. J. Akbashev, M. E. Booher, Langmuir 29 (2013) 4225.10.1021/la305068pSearch in Google Scholar PubMed
133. J. Kaiser, L. Leppert, H. Welz, F. Polzer, S. Wunder, N. Wanderka, M. Albrecht, T. Lunkenbein, J. Breu, S. Kümmel, Y. Lu, M. Ballauff, Phys. Chem. Chem. Phys. 14 (2012) 6487.10.1039/c2cp23974dSearch in Google Scholar PubMed
134. S. Gu, Y. Lu, J. Kaiser, M. Albrecht, M. Ballauff, Phys. Chem. Chem. Phys. 17 (2015) 28137.10.1039/C5CP00519ASearch in Google Scholar
135. E. Menumerov, R. A. Hughes, S. Neretina, Nano Lett. 16 (2016) 7791.10.1021/acs.nanolett.6b03991Search in Google Scholar PubMed
136. I. Pastoriza-Santos, J. Pérez-Juste, S. Carregal-Romero, P. Hervés, L. M. Liz-Marzán, Chem. Asian J. 1 (2006) 730.10.1002/asia.200600194Search in Google Scholar PubMed
137. T. Ung, M. Giersig, D. Dunstan, P. Mulvaney, Langmuir 13 (1997) 1773.10.1021/la960863zSearch in Google Scholar
138. T. Ung, L. M. Liz-Marzán, P. Mulvaney, J. Phys. Chem. B 103 (1999) 6770.10.1021/jp991111rSearch in Google Scholar
139. M. Galanti, D. Fanelli, S. Angioletti-Uberti, M. Ballauff, J. Dzubiella, F. Piazza, Phys. Chem. Chem. Phys. 18 (2016) 20758.10.1039/C6CP01179ASearch in Google Scholar PubMed
©2018 Walter de Gruyter GmbH, Berlin/Boston