Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) March 2, 2018

Surface-Charge Dependent Orientation of Water at the Interface of a Gold Electrode: A Cluster Study

Gianluca Fazio , Gotthard Seifert , Mathias Rapacioli , Nathalie Tarrat and Jan-Ole Joswig EMAIL logo

Abstract

A gold/water interface has been investigated with the DFT-based self-consistent-charge density-functional tight-binding (SCC-DFTB) method using a cluster model. Born–Oppenheimer molecular-dynamics simulations for mono-, bi-, and trilayers of water on the surface of a Au55 cluster have been computed. We have demonstrated the applicability of this method to the study of the structural and dynamical properties of the gold/water-multilayer interface. The results of the simulations clearly show the charge-dependent orientation and the corresponding polarization of the water sphere around the gold cluster. However, it was also shown that this polarization is restricted almost only to the first solvation shell. This illustrates the rather short-range screening behavior of water. The present study builds the basis for further investigations of metal/electrolyte interfaces on a reliable atomistic level, avoiding the problems of spurious artifacts in models using periodic boundary conditions.


Dedicated to:

Prof. Alexander Eychmüller on the occasion of his 60th birthday.


Acknowledgements

On the occasion of his 60th birthday, GS and JOJ acknowledge a long-term fruitful collaboration and friendship with their colleague Alexander Eychmüller. JOJ enjoyed especially their joint participation in the LVB project (project number 18/59/74/95/127/130-133/135). Furthermore, the authors acknowledge computational time by the Zentrum für Informationsdienste und Hochleistungsrechnen (ZIH) at TU Dresden for project TransPheMat.

References

1. H. Helmholtz, Annalen der Physik 243 (1879) 337.10.1002/andp.18792430702Search in Google Scholar

2. M. Gouy, J. Phys. Theor. Appl. 9 (1910) 457.10.1051/jphystap:019100090045700Search in Google Scholar

3. D. L. Chapman, Lond. Edinb. Dubl. Phil. Mag. 25 (1913) 475.10.1080/14786440408634187Search in Google Scholar

4. P. Debye, E. Huckel, Z. Phys. 24 (1923) 185.Search in Google Scholar

5. W. Schmickler, D. Henderson, Prog. Surf. Sci. 22 (1986) 323.10.1016/0079-6816(86)90005-5Search in Google Scholar

6. R. Parsons, Chem. Rev. 90 (1990) 813.10.1021/cr00103a008Search in Google Scholar

7. K.-i. Ataka, T. Yotsuyanagi, M. Osawa, J. Phys. Chem. 100 (1996) 10664.10.1021/jp953636zSearch in Google Scholar

8. Y. Tong, F. Lapointe, M. Thämer, M. Wolf, R. K. Campen, Angew. Chem. Int. Ed. 56 (2017) 4211.10.1002/anie.201612183Search in Google Scholar PubMed

9. J.-J. Velasco-Velez, C. H. Wu, T. A. Pascal, L. F. Wan, J. Guo, D. Prendergast, M. Salmeron, Science 346 (2014) 831.10.1126/science.1259437Search in Google Scholar PubMed

10. Y. Xue, J. Chem. Phys. 136 (2012) 024702.10.1063/1.3675494Search in Google Scholar PubMed

11. G. Seifert, J. Phys. Chem. A. 111 (2007) 5609.10.1021/jp069056rSearch in Google Scholar PubMed

12. G. Seifert, D. Porezag, T. Frauenheim, Int. J. Quantum Chem. 58 (1996) 185.10.1002/(SICI)1097-461X(1996)58:2<185::AID-QUA7>3.0.CO;2-USearch in Google Scholar

13. M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, Th. Frauenheim, S. Suhai, G. Seifert, Phys. Rev. B 58 (1998) 7260.10.1103/PhysRevB.58.7260Search in Google Scholar

14. Q. Cui, M. Elstner, Phys. Chem. Chem. Phys. 16 (2014) 14368.10.1039/C4CP00908HSearch in Google Scholar PubMed

15. D. Selli, G. Fazio, G. Seifert, C. Di Valentin, J. Chem. Theory Comput. 13 (2017) 3862.10.1021/acs.jctc.7b00479Search in Google Scholar PubMed

16. N. Tarrat, M. Rapacioli, J. Cuny, J. Morillo, J.-L. Heully, F. Spiegelman, Comput. Theor. Chem. 1107 (2017) 102.10.1016/j.comptc.2017.01.022Search in Google Scholar

17. A. Fihey, C. Hettich, J. Touzeau, F. Maurel, A. Perrier, C. Köhler, B. Aradi, T. Frauenheim, J. Comput. Chem. 36 (2015) 2075.10.1002/jcc.24046Search in Google Scholar PubMed

18. L. Martínez, R. Andrade, E. G. Birgin, J. M. Martínez, J. Comput. Chem. 30 (2009) 2157.10.1002/jcc.21224Search in Google Scholar PubMed

19. M. Connolly, Science 221 (1983) 709.10.1126/science.6879170Search in Google Scholar PubMed

20. P. Jungwirth, Faraday Discuss. 141 (2009) 9.10.1039/B816684FSearch in Google Scholar

21. A. P. Willard, S. K. Reed, P. A. Madden, D. Chandler, Faraday Discuss. 141 (2009) 423.10.1039/B805544KSearch in Google Scholar PubMed

Received: 2018-01-30
Accepted: 2018-02-07
Published Online: 2018-03-02
Published in Print: 2018-08-28

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 6.12.2022 from frontend.live.degruyter.dgbricks.com/document/doi/10.1515/zpch-2018-1136/html
Scroll Up Arrow