Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) April 14, 2018

Transient Spectroscopy of Glass-Embedded Perovskite Quantum Dots: Novel Structures in an Old Wrapping

Oleg V. Kozlov, Rohan Singh, Bing Ai, Jihong Zhang, Chao Liu and Victor I. Klimov

Abstract

Semiconductor doped glasses had been used by the research and engineering communities as color filters or saturable absorbers well before it was realized that their optical properties were defined by tiny specs of semiconductor matter known presently as quantum dots (QDs). Nowadays, the preferred type of QD samples are colloidal particles typically fabricated via organometallic chemical routines that allow for exquisite control of QD morphology, composition and surface properties. However, there is still a number of applications that would benefit from the availability of high-quality glass-based QD samples. These prospective applications include fiber optics, optically pumped lasers and amplifiers and luminescent solar concentrators (LSCs). In addition to being perfect optical materials, glass matrices could help enhance stability of QDs by isolating them from the environment and improving heat exchange with the outside medium. Here we conduct optical studies of a new type of all-inorganic CsPbBr3 perovskite QDs fabricated directly in glasses by high-temperature precipitation. These samples are virtually scattering free and exhibit excellent waveguiding properties which makes them well suited for applications in, for example, fiber optics and LSCs. However, the presently existing problem is their fairly low room-temperature emission quantum yields of only ca. 1%–2%. Here we investigate the reasons underlying the limited emissivity of these samples by conducting transient photoluminescence (PL) and absorption measurements across a range of temperatures from 20 to 300K. We observe that the low-temperature PL quantum yield of these samples can be as high as ~25%. However, it quickly drops (in a nearly linear fashion) with increasing temperature. Interestingly, contrary to traditional thermal quenching models, experimental observations cannot be explained in terms of a thermally activated nonradiative rate but rather suggest the existence of two distinct QD sub-ensembles of “emissive” and completely “nonemissive” particles. The temperature-induced variation in the PL efficiency is likely due to a structural transformation of the QD surfaces or interior leading to formation of extremely fast trapping sites or nonemissive phases resulting in conversion of emissive QDs into nonemissive. Thus, future efforts on improving emissivity of glass-based perovskite QD samples might focus on approaches for extending the range of stability of the low-temperature highly emissive structure/phase of the QDs up to room temperature.

Acknowledgments

This work was supported by the Laboratory Directed Research and Development program at Los Alamos National Laboratory. We thank Maksym Kovalenko for insightful comments.

References

1. A. I. Ekimov, A. A. Onushchenko, V. A. Tzehomski, Sov. Phys. Chem. Glass 6 (1980) 511.Search in Google Scholar

2. A. I. Ekimov, A. A. Onushchenko, JETP Lett. 34 (1981) 345.Search in Google Scholar

3. V. V. Golubkov, A. I. Ekimov, A. A. Onushchenko, V. A. Tzehomski, Sov. Phys. Chem. Glass, 7 (1982) 265.Search in Google Scholar

4. N. F. Borrelli, D. W. Hall, H. J. Holland, D. W. Smith, J. Appl. Phys. 61 (1987) 5399.10.1063/1.338280Search in Google Scholar

5. Y. V. Vandyshev, V. S. Dneprovskii, V. I. Klimov, JETP Lett. 53 (1991) 314.Search in Google Scholar

6. A. I. Ekimov, F. Hache, M. C. Schanne-Klein, D. Ricard, C. Flytzanis, I. A. Kudryavtsev, T. V. Yazeva, A. V. Rodina, A. L. Efros, J. Opt. Soc. Am. B 10 (1993) 100.10.1364/JOSAB.10.000100Search in Google Scholar

7. M. C. Klein, F. Hache, D. Ricard, C. Flytzanis, Phys. Rev. B 42 (1990) 11123.10.1103/PhysRevB.42.11123Search in Google Scholar

8. S. Nomura, T. Kobayashi, Phys. Rev. B 45 (1992) 1305.10.1103/PhysRevB.45.1305Search in Google Scholar

9. J. L. Machol, F. W. Wise, R. C. Patel, D. B. Tanner, Phys. Rev. B 48 (1993) 2819.10.1103/PhysRevB.48.2819Search in Google Scholar

10. C. Trallero-Giner, A. Debernardi, M. Cardona, E. Menéndez-Proupín, A. I. Ekimov, Phys. Rev. B 57 (1998) 4664.10.1103/PhysRevB.57.4664Search in Google Scholar

11. Y. V. Vandyshev, V. S. Dneprovskii, V. I. Klimov, D. K. Okorokov, JETP Lett. 54 (1991) 442.Search in Google Scholar

12. C. B. Murray, D. J. Norris, M. G. Bawendi, J. Am. Chem. Soc. 115 (1993) 8706.10.1021/ja00072a025Search in Google Scholar

13. X. G. Peng, L. Manna, W. D. Yang, J. Wickham, E. Scher, A. Kadavanich, A. P. Alivisatos, Nature 404 (2000) 59.10.1038/35003535Search in Google Scholar PubMed

14. N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmüller, H. Weller, J. Phys. Chem. B 106 (2002) 7177.10.1021/jp025541kSearch in Google Scholar

15. A. Eychmüller, J. Phys. Chem. B 104 (2000) 6514.10.1021/jp9943676Search in Google Scholar

16. W. Weber, J. Lambe, Appl. Opt. 15 (1976) 2299.10.1364/AO.15.002299Search in Google Scholar PubMed

17. H. Li, K. Wu, H.-J. Song, V. I. Klimov, Nat. Energy 1 (2016) 16157.10.1038/nenergy.2016.157Search in Google Scholar

18. L. R. Bradshaw, K. E. Knowles, S. McDowall, D. R. Gamelin, Nano Lett. 15 (2015) 1315.10.1021/nl504510tSearch in Google Scholar PubMed

19. H.-J. Eisler, V. C. Sundar, M. G. Bawendi, M. Walsh, H. I. Smith, V. I. Klimov, Appl. Phys. Lett. 80 (2002) 4614.10.1063/1.1485125Search in Google Scholar

20. M. A. Petruska, A. P. Bartko, V. I. Klimov, J. Am. Chem. Soc. 124 (2004) 714.10.1021/ja037539sSearch in Google Scholar PubMed

21. L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, M. V. Kovalenko, Nano Lett. 15 (2015) 3692.10.1021/nl5048779Search in Google Scholar PubMed PubMed Central

22. Y.-H. Suh, T. Kim, J. W. Choi, C.-L. Lee, J. Park, ACS Appl. Nano Mater. 1 (2018) 488.10.1021/acsanm.7b00212Search in Google Scholar

23. N. J. L. K. Davis, F. J. de la Peña, M. Tabachnyk, J. M. Richter, R. D. Lamboll, E. P. Booker, F. Wisnivesky Rocca Rivarola, J. T. Griffiths, C. Ducati, S. M. Menke, F. Deschler, N. C. Greenham, J. Phys. Chem. C 121 (2017) 3790.10.1021/acs.jpcc.6b12828Search in Google Scholar PubMed PubMed Central

24. Z. Shi, Y. Li, Y. Zhang, Y. Chen, X. Li, D. Wu, T. Xu, C. Shan, G. Du, Nano Lett. 17 (2017) 313.10.1021/acs.nanolett.6b04116Search in Google Scholar PubMed

25. Y. Xu, Q. Chen, C. Zhang, R. Wang, H. Wu, X. Zhang, G. Xing, W. W. Yu, X. Wang, Y. Zhang, M. Xiao, J. Am. Chem. Soc. 138 (2016) 3761.10.1021/jacs.5b12662Search in Google Scholar PubMed

26. S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss, M. V. Kovalenko, Nat. Commun. 6 (2015) 8056.10.1038/ncomms9056Search in Google Scholar PubMed PubMed Central

27. Y. Wang, X. Li, V. Nalla, H. Zeng, H. Sun, Adv. Funct. Mater. 27 (2017) 1605088.10.1002/adfm.201605088Search in Google Scholar

28. H. Zhao, Y. Zhou, D. Benetti, D. Ma, F. Rosei, Nano Energy 37 (2017) 214.10.1016/j.nanoen.2017.05.030Search in Google Scholar

29. F. Meinardi, Q. A. Akkerman, F. Bruni, S. Park, M. Mauri, Z. Dang, L. Manna, S. Brovelli, ACS Energy Lett. 2 (2017) 2368.10.1021/acsenergylett.7b00701Search in Google Scholar PubMed PubMed Central

30. H. Huang, M. I. Bodnarchuk, S. V. Kershaw, M. V. Kovalenko, A. L. Rogach, ACS Energy Lett. 2 (2017) 2071.10.1021/acsenergylett.7b00547Search in Google Scholar PubMed PubMed Central

31. B. Ai, C. Liu, J. Wang, J. Xie, J. Han, X. Zhao, J. Am. Ceram. Soc. 99 (2016) 2875.10.1111/jace.14400Search in Google Scholar

32. B. Ai, C. Liu, Z. Deng, J. Wang, J. Han, and X. Zhao, Phys. Chem. Chem. Phys. 19 (2017) 17349.10.1039/C7CP02482GSearch in Google Scholar PubMed

33. N. S. Makarov, S. Guo, O. Isaienko, W. Liu, I. Robel, V. I. Klimov, Nano Lett. 16 (2016) 2349.10.1021/acs.nanolett.5b05077Search in Google Scholar PubMed

34. L.-G. Zhang, D.-Z. Shen, X.-W. Fan, S.-Z. Lu, Chin. Phys. Lett. 19 (2002) 578.10.1088/0256-307X/19/4/340Search in Google Scholar

35. D. Valerini, A. Cretí, M. Lomascolo, L. Manna, R. Cingolani, M. Anni, Phys. Rev. B 71 (2005) 235409.10.1103/PhysRevB.71.235409Search in Google Scholar

36. J. Lee, E. S. Koteles, M. O. Vassell, Phys. Rev. B 33 (1986) 5512.10.1103/PhysRevB.33.5512Search in Google Scholar

37. C. M. Iaru, J. J. Geuchies, P. M. Koenraad, D. Vanmaekelbergh, A. Y. Silov, ACS Nano 11 (2017) 11024.10.1021/acsnano.7b05033Search in Google Scholar PubMed PubMed Central

38. V. I. Klimov, D. W. McBranch, Phys. Rev. Lett. 80 (1998) 4028.10.1103/PhysRevLett.80.4028Search in Google Scholar

39. V. I. Klimov, D. W. McBranch, C. A. Leatherdale, M. G. Bawendi, Phys. Rev. B 60 (1999) 13740.10.1103/PhysRevB.60.13740Search in Google Scholar

40. S. Kalytchuk, O. Zhovtiuk, S. V. Kershaw, R. Zbořil, A. L. Rogach, Small 12 (2016) 466.10.1002/smll.201501984Search in Google Scholar PubMed

41. C. de Mello Donegá, M. Bode, A. Meijerink, Phys. Rev. B 74 (2006) 085320.10.1103/PhysRevB.74.085320Search in Google Scholar

42. J. A. McGuire, M. Sykora, I. Robel, L. A. Padilha, J. Joo, J. M. Pietryga, V. I. Klimov, ACS Nano 4 (2010) 6087.10.1021/nn1016296Search in Google Scholar PubMed

43. L. A. Padilha, I. Robel, D. C. Lee, P. Nagpal, J. M. Pietryga, V. I. Klimov, ACS Nano 5 (2011) 5045.10.1021/nn201135kSearch in Google Scholar PubMed

44. M. A. Becker, R. Vaxenburg, G. Nedelcu, P. C. Sercel, A. Shabaev, M. J. Mehl, J. G. Michopoulos, S. G. Lambrakos, N. Bernstein, J. L. Lyons, T. Stöferle, R. F. Mahrt, M. V. Kovalenko, D. J. Norris, G. Rainò, A. L. Efros, Nature 553 (2018) 189.10.1038/nature25147Search in Google Scholar PubMed

45. I. Robel, R. Gresback, U. Kortshagen, R. D. Schaller, V. I. Klimov, Phys. Rev. Lett. 102 (2009) 177404.10.1103/PhysRevLett.102.177404Search in Google Scholar PubMed

46. V. I. Klimov, Annu. Rev. Condens. Matter Phys. 5 (2014) 13.1.10.1146/annurev-conmatphys-031113-133900Search in Google Scholar

47. J. A. Castañeda, G. Nagamine, E. Yassitepe, L. G. Bonato, O. Voznyy, S. Hoogland, A. F. Nogueira, E. H. Sargent, C. H. B. Cruz, L. A. Padilha, ACS Nano 10 (2016) 8603.10.1021/acsnano.6b03908Search in Google Scholar PubMed

48. H.-H. Fang, L. Protesescu, D. M. Balazs, S. Adjokatse, M. V. Kovalenko, M. A. Loi, Small 13 (2017) 1700673.10.1002/smll.201700673Search in Google Scholar PubMed


Supplementary Material:

The online version of this article offers supplementary material (https://doi.org/10.1515/zpch-2018-1168).


Received: 2018-02-28
Accepted: 2018-03-18
Published Online: 2018-04-14
Published in Print: 2018-08-28

©2018 Walter de Gruyter GmbH, Berlin/Boston