Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) October 4, 2018

Quantum Chemistry Meets Deep Learning for Complex Carbohydrate and Glycopeptide Species I

M. Gokhan Habiboglu EMAIL logo and Orkid Coskuner-Weber EMAIL logo


Carbohydrate complexes are crucial in many various biological and medicinal processes. The impacts of N-acetyl on the glycosidic linkage flexibility of methyl β-D-glucopyranose, and of the glycoamino acid β-D-glucopyranose-asparagine are poorly understood at the electronic level. Furthermore, the effect of D- and L-isomers of asparagine in the complexes of N-acetyl-β-D-glucopyranose-(L)-asparagine and N-acetyl-β-D-glucopyranose-(D)-asparagine is unknown. In this study, we performed density functional theory calculations of methyl β-D-glucopyranose, methyl N-acetyl-β-D-glucopyranose, and of glycoamino acids β-D-glucopyranose-asparagine, N-acetyl-β-D-glucopyranose-(L)-asparagine and N-acetyl-β-D-glucopyranose-(D)-asparagine for studying their linkage flexibilities, total solvated energies, thermochemical properties and intra-molecular hydrogen bond formations in an aqueous solution environment using the COnductor-like Screening MOdel (COSMO) for water. We linked these density functional theory calculations to deep learning via estimating the total solvated energy of each linkage torsional angle value. Our results show that deep learning methods accurately estimate the total solvated energies of complex carbohydrate and glycopeptide species and provide linkage flexibility trends for methyl β-D-glucopyranose, methyl N-acetyl-β-D-glucopyranose, and of glycoamino acids β-D-glucopyranose-asparagine, N-acetyl-β-D-glucopyranose-(L)-asparagine and N-acetyl-β-D-glucopyranose-(D)-asparagine in agreement with density functional theory results. To the best of our knowledge, this study represents the first application of density functional theory along with deep learning for complex carbohydrate and glycopeptide species in an aqueous solution medium. In addition, this study shows that a few thousands of optimization frames from DFT calculations are enough for accurate estimations by deep learning tools.

Dedicated to: Ulrich Deiters on the occasion of his 65th birthday.


O.C.W. thanks Prof. Ulrich K. Deiters for the extensive and unique research training during her Diplomarbeit and then Doktorarbeit at the University of Cologne. O.C.W. also is thankful for the unlimited support and friendship provided by Prof. Dr. Ulrich K. Deiters. We wish a happy birthday to Prof. Dr. Ulrich K. Deiters and may the force be with him.

The authors acknowledge TRUBA resources because the numerical calculations reported in this study were performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources).


[1] C. Schäffer, P. Messner, Microbiology 151 (2005) 643.10.1099/mic.0.27749-0Search in Google Scholar PubMed

[2] M. Sára, Trends Microbiol. 9 (2001) 47.10.1016/S0966-842X(00)01905-3Search in Google Scholar PubMed

[3] J. L. Asensio, F. J. Canada, H. C. Siebert, J. Laynez, A. Poveda, P. M. Nieto, U. M. Soedjanaamadja, H. J. Gabius, J. Jimenez-Barbero, Chem. Biol. 7 (2000) 529.10.1016/S1074-5521(00)00136-8Search in Google Scholar PubMed

[4] H. Zhou, A. J. Hanneman, N. D. Chasteen, V. N. Reinhold, J. Proteome Res. 12 (2013) 4547.10.1021/pr4006734Search in Google Scholar PubMed

[5] M. Perbandt, E. W. Guthöhrlein, W. Rypniewski, K. Idakieva, S. Stoeva, W. Voelter, N. Genov, C. Betzel, Biochemistry-US 42 (2003) 6341.10.1021/bi020672xSearch in Google Scholar

[6] M. Maras, A. Bruyn, J. Schraml, P. Herdewijn, M. Claeyssens, W. Fiers, R. Contreras, Eur. J. Biochem. 245 (1997) 617.10.1111/j.1432-1033.1997.00617.xSearch in Google Scholar PubMed

[7] J. Travis, D. Johnson, Methods Enzymol. 80 (1981) 754.10.1016/S0076-6879(81)80057-2Search in Google Scholar

[8] C. Slawson, G. W. Hart, Nat. Rev. Cancer 11 (2011) 678.10.1038/nrc3114Search in Google Scholar PubMed PubMed Central

[9] S. R. V. Knott, E. Wagenblast, S. Khan, S. Y. Kim, M. Soto, M. Wagner, M. O. Turgeon, L. Fish, N. Erard, A. L. Gable, A. R. Maceli, S. Dickopf, E. K. Papachristou, C. S. D’ Santos, L. A. Carey, J. E. Wilkinson, J. C. Harrell, C. M. Perou, H. Goodarzi, G. Poulogiannis, G. J. Hannon, Nature 554 (2018) 378.10.1038/nature25465Search in Google Scholar PubMed PubMed Central

[10] J. W. Dennis, Cancer Surv. 7 (1988) 573.Search in Google Scholar PubMed

[11] K. Vaidyanathan, S. Durning, L. Wells, Crit. Rev. Biochem. Mol. Biol. 49 (2014) 140.10.3109/10409238.2014.884535Search in Google Scholar PubMed PubMed Central

[12] H. Guo, B. Zhang, A. V. Nairn, T. Nagy, K. W. Moremen, P. Buckhaults, M. Pierce, J. Biol. Chem. 292 (2017) 4123.10.1074/jbc.M116.763201Search in Google Scholar PubMed

[13] J. Ma, G. W. Hart, Clin. Proteomics 11 (2014) 8.10.1186/1559-0275-11-8Search in Google Scholar PubMed

[14] H. Y. Naim, H. Koblet, Arch. Virol. 122 (1992) 45.10.1007/BF01321117Search in Google Scholar PubMed

[15] J. A. Mondotte, P. Y. Lozach, A. Amara, A. V. Gamarnik, J. Virol. 81 (2007) 7136.10.1128/JVI.00116-07Search in Google Scholar PubMed

[16] G. Wengler, E. Castle, U. Leidner, T. Nowak, G. Wengler, Virology 147 (1985) 264.10.1016/0042-6822(85)90129-1Search in Google Scholar PubMed

[17] Y. Shi, L. Dai, H. Song, G. F. Gao, Adv. Exp. Med. Biol. 1062 (2018) 77.10.1007/978-981-10-8727-1_6Search in Google Scholar PubMed

[18] D. Sirohi, R. J. Kuhn, MBio 8 (2017) e00916.Search in Google Scholar PubMed

[19] K. Popuri, R. Balachandar, K. Alpert, D. Lu, M. Bhalla, I. R. Mackenzie, R. G. Hsiung, L. Wang, M. F. Beg, Neuroimage Clin. 18 (2018) 802.10.1016/j.nicl.2018.03.007Search in Google Scholar PubMed PubMed Central

[20] A. I. Duarte, M. S. Santos, C. R. Oliveira, P. I. Moreira, Neuropharmacology 136 (2018) 223.10.1016/j.neuropharm.2018.01.044Search in Google Scholar PubMed

[21] S. Olivier-Van Stichelen, J. A. Hanover, Curr. Opin. Clin. Nutr. Metab. Care 18 (2015) 339.10.1097/MCO.0000000000000188Search in Google Scholar PubMed PubMed Central

[22] P. Polavarapu, C. Ewig, J. Comput. Chem. 13 (1992) 1255.10.1002/jcc.540131009Search in Google Scholar

[23] U. Salzner, P. v. R. Schleyer, J. Am. Chem. Soc. 22 (1993) 10231.10.1021/ja00075a044Search in Google Scholar

[24] L. B. A. Oliveira, G. Colherinhas, J. Mol. Liq. 237 (2017) 295.10.1016/j.molliq.2017.04.108Search in Google Scholar

[25] M. S. Cintrón, G. P. Johnson, A. D. French, Carbohydr. Res. 443–444 (2017) 87.10.1016/j.carres.2017.03.007Search in Google Scholar PubMed

[26] V. Singh, P. K. Chhotaray, N. Islam, R. L. Gardas, J. Chem. Thermodyn. 103 (2016) 7.10.1016/j.jct.2016.07.051Search in Google Scholar

[27] J. Y. Salpin, J. Tortajada, J. Mass. Spectrom. 39 (2004) 930.10.1002/jms.671Search in Google Scholar PubMed

[28] X. Qian, M. R. Nimlos, M. Davis, D. K. Johnson, M. E. Himmel, Carbohydr. Res. 340 (2005) 2319.10.1016/j.carres.2005.07.021Search in Google Scholar PubMed

[29] O. Coskuner, J. Chem. Phys. 127 (2007) 015101.10.1063/1.2747238Search in Google Scholar PubMed

[30] O. Coskuner, D. E. Bergeron, L. Rincon, J. W. Hudgens, C. A. Gonzalez, J. Phys. Chem. A 112 (2008) 2940.10.1021/jp711759qSearch in Google Scholar PubMed

[31] O. Coskuner, D. E. Bergeron, L. Rincon, J. W. Hudgens, C. A. Gonzalez, J. Phys. Chem. A 113 (2009) 2491.10.1021/jp805747fSearch in Google Scholar PubMed

[32] O. Coskuner, D. E. Bergeron, L. Rincon, J. W. Hudgens, C. A. Gonzalez, J. Phys. Chem. A 129 (2008) 045102.10.1063/1.2958916Search in Google Scholar PubMed

[33] T. H. Dunning, J. Chem. Phys. 90 (1989) 1007.10.1063/1.456153Search in Google Scholar

[34] O. Wise-Scira, L. Xu, T. Kitahara, G. Perry, O. Coskuner, J. Chem. Phys. 135 (2011) 205101.10.1063/1.3662490Search in Google Scholar PubMed

[35] R. Ramakrishnan, O. A. von Lilienfeld, Reviews in Computational Chemistry, Wiley, New Jersey, Chapter 5 (2017).Search in Google Scholar

[36] G. B. Goh, N. O. Hodas, A. Vishnu, J. Comput. Chem. 38 (2017) 1291.10.1002/jcc.24764Search in Google Scholar PubMed

[37] H. D. Li, Y. Z. Liang, Q. S. Xu, Chemometr. Intell. Lab. 95 (2009) 188.10.1016/j.chemolab.2008.10.007Search in Google Scholar

[38] G. Hautier, C. C. Fischer, A. Jain, T. Mueller, G. Ceder, Chem. Mater. 22 (2010) 3762.10.1021/cm100795dSearch in Google Scholar

[39] K. R. Muller, G. Ratsch, S. Sonnenburg, S. Mika, M. Grimm, N. Heinrich, J. Chem. Inf. Model. 45 (2005) 249.10.1021/ci049737oSearch in Google Scholar PubMed

[40] A. P. Bartok, M. J. Gillan, F. R. Manby, G. Csanyi, Phys. Rev. B 88 (2013) 054104.10.1103/PhysRevB.88.054104Search in Google Scholar

[41] M. Rupp, A. Tkatchenko, K. R. Müller, O. A. von Lilienfeld, Phys. Rev. Lett. 108 (2012) 058301.10.1103/PhysRevLett.108.058301Search in Google Scholar PubMed

[42] J. C. Snyder, M. Rupp, K. Hansen, K. R. Müller, K. Burke, Phys. Rev. Lett. 108 (2012) 253002.10.1103/PhysRevLett.108.253002Search in Google Scholar PubMed

[43] J. Lee, A. Seko, K. Shitara, K. Nakayama, I. Tanaka, Phys. Rev. B 93 (2016) 115104.10.1103/PhysRevB.93.115104Search in Google Scholar

[44] R. M. Balabin, E. I. Lomakina, J. Chem. Phys. 131 (2009) 074104.10.1063/1.3206326Search in Google Scholar PubMed

[45] K. Yao, J.E. Herr, J. Parkhill, J. Chem. Phys. 146 (2017) 014106.10.1063/1.4973380Search in Google Scholar PubMed

[46] J. Behler, J. Chem. Phys. 145 (2016) 170901.10.1063/1.4966192Search in Google Scholar PubMed

[47] G. Montavon, M. Rupp, V. Gobre, A. V. Mayagoitia, K. Hansen, A. Tkatchenko, K. R. Müller, O. A. v. Lilienfeld, New J. Phys. 15 (2013) 095003.10.1088/1367-2630/15/9/095003Search in Google Scholar

[48] G. Schaftenaar, J. H. Noordik, J. Comput. Aided Mol. Des. 14 (2000) 123.10.1023/A:1008193805436Search in Google Scholar PubMed

[49] A. D. Becke, J. Chem. Phys. 98 (1993) 5648.10.1063/1.464913Search in Google Scholar

[50] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 37 (1988) 785.10.1103/PhysRevB.37.785Search in Google Scholar

[51] S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58 (1980) 1200.10.1139/p80-159Search in Google Scholar

[52] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 98 (1994) 11623.10.1021/j100096a001Search in Google Scholar

[53] M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, J. A. Montgomery, J. Comput. Chem. 14 (1993) 1347.10.1002/jcc.540141112Search in Google Scholar

[54] R. S. Mulliken, J. Chem. Phys. 23 (1955) 1833.10.1063/1.1740588Search in Google Scholar

[55] A. E. Reed, R. B. Weinstock, F. Weinhold, J. Chem. Phys. 83 (1985) 735.10.1063/1.449486Search in Google Scholar

[56] A. Klamt, G. Schüürmann, J. Chem. Soc. Perkin Trans. 2 0 (1993) 799.10.1039/P29930000799Search in Google Scholar

[57] A. Bondi, J. Phys. Chem. 68 (1964) 441.10.1021/j100785a001Search in Google Scholar

[58] D. Nguyen, B. Widrow, Improving the Learning Speed of 2-layer Neural Networks by Choosing Initial Values of the Adaptive Weights, in: Proceedings of the International Joint Conference on Neural Networks, San Diego, CA, 3 (1990) 21.10.1109/IJCNN.1990.137819Search in Google Scholar

[59] M. F. Møller, Neural Netw. 6 (1993) 525.10.1016/S0893-6080(05)80056-5Search in Google Scholar

[60] D. L. Elliott, A Better Activation Function for Artificial Neural Networks, Institute for Systems Research, University of Maryland (1993).Search in Google Scholar

[61] W. G. Ferrier, Acta Cryst. 13 (1960) 678.10.1107/S0365110X60001588Search in Google Scholar

[62] R. A. Jacobson, J. A. Wunderlich, Nature 184 (1959) 1719.10.1038/1841719a0Search in Google Scholar

[63] C. J. Brown, J. Chem. Soc. A (1966) 927.10.1039/J19660000927Search in Google Scholar

[64] S. S. Chu, G. A. Jeffrey, Acta Cryst. B24 (1968) 830.10.1107/S0567740868003250Search in Google Scholar

[65] M. Mathiselvam, B. Varghese, D. Loganathan, Glycoconj. J. 28 (2011) 573.10.1007/s10719-011-9357-ySearch in Google Scholar PubMed

[66] L. T. Delbaere, Biochem. J. 143 (1974) 197.10.1042/bj1430197Search in Google Scholar PubMed PubMed Central

[67] J. J. Verbist, M. S. Lehmann, T. F. Koetzle, W. C. Hamilton, Acta Cryst. 28 (1972) 3006.10.1107/S0567740872007368Search in Google Scholar

[68] J. S. Lomas, L. Joubert, Magn. Reson. Chem. 55 (2017) 893.10.1002/mrc.4599Search in Google Scholar PubMed

Supplementary Material

The online version of this article offers supplementary material (DOI:

Received: 2018-06-13
Accepted: 2018-09-10
Published Online: 2018-10-04
Published in Print: 2019-04-24

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.1.2023 from
Scroll Up Arrow