Accessible Requires Authentication Published by Oldenbourg Wissenschaftsverlag March 12, 2019

Adsorption Forms of Water Molecules on Gas-Phase Platinum Clusters Pt3+ Studied by Vibrational Photodissociation Spectroscopy

Fumitaka Mafuné, Manami Abe and Satoshi Kudoh

Abstract

The vibrational spectra of Pt3(H2O)m+ (m = 1–4) cluster were measured in the 3000–3800 cm−1 range via infrared photodissociation (IRPD) spectroscopy. The IRPD spectra were recorded through the photodissociation of Pt3(H2O)m+-Ar (m = 1–3) complexes and Pt3(H2O)4+ cations upon vibrational excitation. The spectra were compared to the vibrational spectra of several stable isomers obtained by density functional theory (DFT) calculations and the adsorption forms of the water molecules were subsequently discussed. The IRPD spectra of all the studied Pt3(H2O)m+ cations exhibited intense peaks at ∼3600 and 3700 cm−1. This suggested that the water molecules mainly adsorb onto the Pt clusters in molecular form and that each molecule binds directly to a Pt atom via its O atom side. For the water-rich Pt3(H2O)4+ cations, all four water molecules were directly bound to the Pt atoms; however, according to the DFT calculations, the fourth H2O molecule could bind to a first-layer water molecule through hydrogen bonding.

Acknowledgement

The calculations were performed in part using the facilities of the Research Centre for Computational Science, Okazaki, Japan.

References

1. E. P. Murray, T. Tsai, S. A. Barnett, Nature. 400 (1999) 649.10.1038/23220 Search in Google Scholar

2. J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, H. Jónsson, J. Phys. Chem. B. 108 (2004) 17886.10.1021/jp047349j Search in Google Scholar

3. M. J. Kolb, F. Calle-Vallejo, L. B. F. Juurlink, M. T. M. Koper, J. Chem. Phys. 140 (2014). Search in Google Scholar

4. Y. T. Cui, Y. Harada, H. Niwa, T. Hatanaka, N. Nakamura, M. Ando, T. Yoshida, K. Ishii, D. Matsumura, H. Oji, H. Ofuchi, M. Oshima, Sci. Rep. 7 (2017) 1.2812705110.1038/s41598-016-0028-x Search in Google Scholar

5. T. Imaoka, H. Kitazawa, W. J. Chun, and K. Yamamoto, Angew. Chemie – Int. Ed. 54 (2015) 9810.10.1002/anie.201504473 Search in Google Scholar

6. Y. Wang, P. B. Balbuena, J. Chem. Theory Comput. 1 (2005) 935.2664190910.1021/ct0500794 Search in Google Scholar

7. M. N. Huda, L. Kleinman, Phys. Rev. B – Condens. Matter Mater. Phys. 74 (2006) 1. Search in Google Scholar

8. A. E. Green, J. Justen, W. Schöllkopf, A. S. Gentleman, A. Fielicke, S. R. Mackenzie, Angew. Chemie – Int. Ed. 57 (2018) 14822.10.1002/anie.201809099 Search in Google Scholar

9. T. D. Jaeger, A. Fielicke, G. Von Helden, G. Meijer, M. A. Duncan, Chem. Phys. Lett. 392 (2004) 409.10.1016/j.cplett.2004.05.057 Search in Google Scholar

10. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, revision E.01, Gaussian Inc., Wallingford, CT (2013). Search in Google Scholar

11. A. D. Becke, J. Chem. Phys. 98 (1993) 5648.10.1063/1.464913 Search in Google Scholar

12. C. Lee, W. Yang, R. G. Parr, Phys. Rev. B. 37 (1988) 785.10.1103/PhysRevB.37.785 Search in Google Scholar

13. P. J. Hay, W. R. Wadt, J. Chem. Phys. 82 (1985) 299.10.1063/1.448975 Search in Google Scholar

14. R. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys. 54 (1971) 724.10.1063/1.1674902 Search in Google Scholar

15. W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys. 56 (1972) 2257.10.1063/1.1677527 Search in Google Scholar

16. D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, H. Preuss, Theoretica chimica acta. 77 (1990) 123.10.1007/BF01114537 Search in Google Scholar

17. T. H. Dunning Jr. J. Chem. Phys. 90 (1989) 1007.10.1063/1.456153 Search in Google Scholar

18. F. Nickolai, O. L. Zobov, C. Polyansky, L. S. Ruth, T. Jonathan, Chemical Physics Letters. 260 (1996) 381.10.1016/0009-2614(96)00872-X Search in Google Scholar

19. M. Yamaguchi, F. Mafuné, J. Phys. Chem. C. 121 (2017) 8498.10.1021/acs.jpcc.7b01963 Search in Google Scholar

20. T. Nagata, K. Miyajima, F. Mafuné, J. Phys. Chem. A. 119 (2015) 10255.2639478110.1021/acs.jpca.5b07749 Search in Google Scholar

21. T. Nagata, F. Mafuné, J. Phys. Chem. C. 121 (2017) 16291.10.1021/acs.jpcc.7b04119 Search in Google Scholar

22. D. Masuzaki, T. Nagata, F. Mafuné, J. Phys. Chem. A. 121 (2017) 3864.28460521 Search in Google Scholar

Received: 2018-12-14
Accepted: 2019-02-14
Published Online: 2019-03-12
Published in Print: 2019-06-26

©2019 Walter de Gruyter GmbH, Berlin/Boston