Abstract
The paper reports the results of the measurement of surface tension in binary liquid mixtures containing choline chloride, ethylene glycol and water and ternary mixtures of ethaline (a eutectic mixture of ethylene glycol and choline chloride, the so-called deep eutectic solvent) with water. The surface tension is determined in a wide range of components’ concentration for the temperatures of 25, 30, 40, 50, 60 and 70 °C. The dependences of surface tension on the concentration of liquids are treated by means of Gibbs adsorption isotherm and linear form of Langmuir adsorption isotherms. The values of the equilibrium constant of adsorption at the interface liquid solution/air as well as the standard adsorption Gibbs energy, enthalpy and entropy are calculated for the binary and ternary mixtures under consideration. The obtained results are interpreted in the light of intermolecular interactions in fluids. Our findings show that ethylene glycol and choline cation interact with each other in the adsorbed surface layer formed at the interface between air and diluted solutions of ethaline.
Acknowledgements
This work was supported by the Ministry of Education and Science of Ukraine (project no. 0118U003398).
References
1. A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed, V. Tambyrajah, Chem. Commun. (2003) 70.10.1039/b210714gSearch in Google Scholar
2. E. L. Smith, A. P. Abbott, K. S. Ryder, Chem. Rev. 114 (2014) 11060.10.1021/cr300162pSearch in Google Scholar
3. A. Abo-Hamad, M. Hayyan, M. A. AlSaadi, M. A. Hashim, Chem. Eng. J. 273 (2015) 551.10.1016/j.cej.2015.03.091Search in Google Scholar
4. A. Paiva, R. Craveiro, I. Aroso, M. Martins, R. L. Reis, A. R. C. Duarte, ACS Sustain. Chem. Eng. 2 (2014) 1063.10.1021/sc500096jSearch in Google Scholar
5. L. I. N. Tomé, V. Baião, W. da Silva, C. M. A. Brett, Appl. Mater. Today 10 (2018) 30.10.1016/j.apmt.2017.11.005Search in Google Scholar
6. Q. Zhang, K. D. O. Vigier, S. Royer, F. Jérôme, Chem. Soc. Rev. 41 (2012) 7108.10.1039/c2cs35178aSearch in Google Scholar
7. C. Florindo, F. Lima, B. D. Ribeiro, I. M. Marrucho, Curr. Opin. Green Sustain. Chem. 18 (2019) 31.10.1016/j.cogsc.2018.12.003Search in Google Scholar
8. D. Shah, F. S. Mjalli, Phys. Chem. Chem. Phys. 16 (2014) 23900.10.1039/C4CP02600DSearch in Google Scholar
9. C. Du, B. Zhao, X.-B. Chen, N. Birbilis, H. Yang, Sci. Rep. 6 (2016) 29225.10.1038/srep29225Search in Google Scholar
10. D. C. McCalman, L. Sun, Y. Zhang, J. F. Brennecke, E. J. Maginn, W. F. Schneider, J. Phys. Chem. B 119 (2015) 6018.10.1021/acs.jpcb.5b01986Search in Google Scholar
11. V. S. Protsenko, A. A. Kityk, D. A. Shaiderov, F. I. Danilov, J. Mol. Liq. 212 (2015) 716.10.1016/j.molliq.2015.10.028Search in Google Scholar
12. L. S. Bobrova, F. I. Danilov, V. S. Protsenko, J. Mol. Liq. 223 (2016) 48.10.1016/j.molliq.2016.08.027Search in Google Scholar
13. V. S. Protsenko, L. S. Bobrova, F. I. Danilov, Ionics 23 (2017) 637.10.1007/s11581-016-1826-7Search in Google Scholar
14. L. Weng, M. Toner, Phys. Chem. Chem. Phys. 20 (2018) 22455.10.1039/C8CP03882ASearch in Google Scholar
15. O. S. Hammond, D. T. Bowron, K. J. Edler, Angew. Chem. 129 (2017) 9914.10.1002/ange.201702486Search in Google Scholar
16. T. Zhekenov, N. Toksanbayev, Z. Kazakbayeva, D. Shah, F. S. Mjalli, Fluid Phase Equilib. 441 (2017) 43.10.1016/j.fluid.2017.01.022Search in Google Scholar
17. C. Ma, A. Laaksonen, C. Liu, X. Lu, X. Ji, Chem. Soc. Rev. 47 (2018) 8685.10.1039/C8CS00325DSearch in Google Scholar
18. D. Lapeña, L. Lomba, M. Artal, C. Lafuente, B. Giner, Fluid Phase Equilib. 492 (2019) 1.10.1016/j.fluid.2019.03.018Search in Google Scholar
19. N. G. Tsierkezos, I. E. Molinou, J. Chem. Eng. Data 43 (1998) 989.10.1021/je9800914Search in Google Scholar
20. M. Tariq, M. G. Freire, B. Saramago, J. A. P. Coutinho, J. N. C. Lopes, L. P. N. Rebelo, Chem. Soc. Rev. 41 (2012) 829.10.1039/C1CS15146KSearch in Google Scholar
21. Y. Marcus, Entropy 20 (2018) 524.10.3390/e20070524Search in Google Scholar
©2020 Walter de Gruyter GmbH, Berlin/Boston