Abstract
Li1.5Al0.5Ti1.5(PO4)3 (LATP) powders were prepared from different NO x -free precursors using an aqueous-based solution-assisted solid-state reaction (SA-SSR). The sintering behavior, phase formation, microstructure and ionic conductivity of the powders were explored as a function of sintering temperature. The powders showed a relatively narrow temperature windows in which shrinkage occurred. Relative densities of 95% were reached upon heating between 900 and 960 °C. Depending on the morphological features of the primary particles, either homogeneous and intact microstructures with fine grains of about <2 µm in size or a broad grain size distribution, micro-cracks and grain cleavages were obtained, indicating the instability of the microstructure. Consequently, the ceramics with a homogeneous microstructure possessed a maximum total ionic conductivity of 0.67 mS cm−1, whereas other ceramics reached only 0.58 mS cm−1 and 0.21 mS cm−1.
Dedicated to Paul Heitjans on the occasion of his 75th birthday.
Funding source: German Federal Ministry of Education and Research (BMBF)
Award Identifier / Grant number: 03XP0109E
Acknowledgements
We thank Dr. D. Grüner (FZJ, IEK-2) for the SEM investigations, M. Andreas and V. Bader for technical assistance, and A. Hilgers for PSD and M.-T. Gerhards for DTA/TG and dilatometry measurements. We also thank our colleagues at the Central Institute of Engineering, Electronics and Analytics (ZEA-3) for the ICP-OES analysis.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: The results of this work are part of the project “BCT – Battery Cell Technology” funded by the German Federal Ministry of Education and Research (BMBF) under support code 03XP0109E. The authors take responsibility for the content of this publication.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Zhao, E., Ma, F., Jin, Y., Kanamura, K. J. Alloys Comp. 2016, 680, 646–653, https://doi.org/10.1016/j.jallcom.2016.04.173.Search in Google Scholar
2. Kunshina, G. B., Gromov, O. G., Lokshin, E. P., Kalinnikov, V. T. Russ. J. Inorg. Chem. 2014, 59, 424–430, https://doi.org/10.1134/s0036023614050118.Search in Google Scholar
3. Xu, X., Wen, Z., Wu, J., Yang, J. Solid State Ionics 2007, 178, 29–34, https://doi.org/10.1016/j.ssi.2006.11.009.Search in Google Scholar
4. Bucharsky, E. C., Schell, K. G., Hintennach, A., Hoffmann, M. J. Solid State Ionics 2015, 274, 77–82, https://doi.org/10.1016/j.ssi.2015.03.009.Search in Google Scholar
5. Ma, Q., Xu, Q., Tsai, C.-L., Tietz, F., Guillon, O. J. Am. Ceram. Soc. 2016, 99, 410–414, https://doi.org/10.1111/jace.13997.Search in Google Scholar
6. Key, B., Schroeder, D. J., Ingram, B. J., Vaughey, J. T. Chem. Mater. 2012, 24, 287–293, https://doi.org/10.1021/cm202773d.Search in Google Scholar
7. Epp, V., Ma, Q., Tietz, F., Wilkening, M. Phys. Chem. Chem. Phys. 2015, 17, 32115–32121, https://doi.org/10.1039/c5cp05337d.Search in Google Scholar PubMed
8. Vinod Chandran, C., Pristat, S., Witt, E., Tietz, F., Heitjans, P. J. Phys. Chem. C 2016, 120, 8436–8442, https://doi.org/10.1021/acs.jpcc.6b00318.Search in Google Scholar
9. Ma, Q., Guin, M., Naqash, S., Tsai, C.-L., Tietz, F., Guillon, O. Chem. Mater. 2016, 28, 4821–4828, https://doi.org/10.1021/acs.chemmater.6b02059.Search in Google Scholar
10. Naqash, S., Ma, Q., Tietz, F., Guillon, O. Solid State Ionics 2017, 302, 83–91, https://doi.org/10.1016/j.ssi.2016.11.004.Search in Google Scholar
11. Davaasuren, B., Tietz, F. Solid State Ionics 2019, 338, 144–152, https://doi.org/10.1016/j.ssi.2019.05.016.Search in Google Scholar
12. Kotobuki, M., Kobayashi, B., Koishi, M., Mizushima, T., Kakuta, N. Mater. Technol. 2014, 29, A93–A97, https://doi.org/10.1179/1753555714y.0000000181.Search in Google Scholar
13. Degen, T., Sadki, M., Bron, E., König, U., Nénert, G. Powder Diffr. 2014, 29, S13–S18, https://doi.org/10.1017/s0885715614000840.Search in Google Scholar
14. Hallopeau, L., Bregiroux, D., Rousse, G., Portehault, D., Stevens, P., Toussaint, G., Laberty-Robert, C. J. Power Sources 2018, 378, 48–52, https://doi.org/10.1016/j.jpowsour.2017.12.021.Search in Google Scholar
15. Woodcock, D. A., Lightfoot, P. J. Mater. Chem. 1999, 9, 2907–2911, https://doi.org/10.1039/a904193a.Search in Google Scholar
16. Huang, C. Y., Agrawal, D. K., McKinstry, H. A. J. Mater. Sci. 1995, 30, 3509–3514, https://doi.org/10.1007/bf00349902.Search in Google Scholar
17. Prasada Rao, R., Maohua, C., Adams, S. J. Solid State Electrochem. 2012, 16, 3349–3354, https://doi.org/10.1007/s10008-012-1780-x.Search in Google Scholar
18. Hupfer, T., Bucharsky, E. C., Schell, K. G., Senyshyn, A., Monchak, M., Hoffmann, M. J., Ehrenberg, H. Solid State Ionics 2016, 288, 235–239, https://doi.org/10.1016/j.ssi.2016.01.036.Search in Google Scholar
19. Case, D., McSloy, A. J., Sharpe, R., Yeadel, S. R., Bartlett, T., Cookson, J., Dashjav, E., Tietz, F., Kumar, C. M. N., Goddard, P. Solid State Ionics 2020, 346, 115192, https://doi.org/10.1016/j.ssi.2019.115192.Search in Google Scholar
20. Oota, T., Yamai, I. J. Am. Ceram. Soc. 1986, 69, 1–6, https://doi.org/10.1111/j.1151-2916.1986.tb04682.x.Search in Google Scholar
21. Yamai, I., Ota, T. J. Am. Ceram. Soc. 1993, 76, 487–491, https://doi.org/10.1111/j.1151-2916.1993.tb03811.x.Search in Google Scholar
22. Jackman, S. D., Cutler, R. A. J. Power Sources 2012, 218, 65–72, https://doi.org/10.1016/j.jpowsour.2012.06.081.Search in Google Scholar
23. Sinclair, D. C. Bol. Soc. Esp. Cerám. Vidrio 1995, 34, 55–65.Search in Google Scholar
24. Kotobuki, M., Koishi, M., Kato, Y. Ionics 2013, 19, 1945–1948, https://doi.org/10.1007/s11581-013-1000-4.Search in Google Scholar
25. Rossbach, A., Tietz, F., Grieshammer, S. J. Power Sources 2018, 391, 1–9. and references therein, https://doi.org/10.1016/j.jpowsour.2018.04.059.Search in Google Scholar
26. Kotobuki, M., Koishi, M. Ceram. Int. 2013, 39, 4645–4649, https://doi.org/10.1016/j.ceramint.2012.10.206.Search in Google Scholar
27. Winter, E., Seipel, P., Zinkevich, T., Indris, S., Davaasuren, B., Tietz, F., Vogel, M., Z. Phys. Chem. 2022, 236, 689.10.1515/zpch-2022-1774Search in Google Scholar
28. Lang, B., Ziebarth, B., Elsässer, C. Chem. Mater. 2015, 27, 5040–5048, https://doi.org/10.1021/acs.chemmater.5b01582.Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/zpch-2021-3090).
© 2021 Walter de Gruyter GmbH, Berlin/Boston