Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) September 3, 2021

Sintering behavior and ionic conductivity of Li1.5Al0.5Ti1.5(PO4)3 synthesized with different precursors

  • Bambar Davaasuren , Qianli Ma , Alexandra von der Heiden and Frank Tietz EMAIL logo


Li1.5Al0.5Ti1.5(PO4)3 (LATP) powders were prepared from different NO x -free precursors using an aqueous-based solution-assisted solid-state reaction (SA-SSR). The sintering behavior, phase formation, microstructure and ionic conductivity of the powders were explored as a function of sintering temperature. The powders showed a relatively narrow temperature windows in which shrinkage occurred. Relative densities of 95% were reached upon heating between 900 and 960 °C. Depending on the morphological features of the primary particles, either homogeneous and intact microstructures with fine grains of about <2 µm in size or a broad grain size distribution, micro-cracks and grain cleavages were obtained, indicating the instability of the microstructure. Consequently, the ceramics with a homogeneous microstructure possessed a maximum total ionic conductivity of 0.67 mS cm−1, whereas other ceramics reached only 0.58 mS cm−1 and 0.21 mS cm−1.

Dedicated to Paul Heitjans on the occasion of his 75th birthday.

Corresponding author: Frank Tietz, Forschungszentrum Jülich GmbH, IEK-1: Materials Synthesis and Processing, D-52425 Jülich, Germany; and Forschungszentrum Jülich GmbH, IEK-12: Helmholtz-Institute Münster, D-52425 Jülich, Germany, E-mail:

Funding source: German Federal Ministry of Education and Research (BMBF)

Award Identifier / Grant number: 03XP0109E


We thank Dr. D. Grüner (FZJ, IEK-2) for the SEM investigations, M. Andreas and V. Bader for technical assistance, and A. Hilgers for PSD and M.-T. Gerhards for DTA/TG and dilatometry measurements. We also thank our colleagues at the Central Institute of Engineering, Electronics and Analytics (ZEA-3) for the ICP-OES analysis.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The results of this work are part of the project “BCT – Battery Cell Technology” funded by the German Federal Ministry of Education and Research (BMBF) under support code 03XP0109E. The authors take responsibility for the content of this publication.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.


1. Zhao, E., Ma, F., Jin, Y., Kanamura, K. J. Alloys Comp. 2016, 680, 646–653, in Google Scholar

2. Kunshina, G. B., Gromov, O. G., Lokshin, E. P., Kalinnikov, V. T. Russ. J. Inorg. Chem. 2014, 59, 424–430, in Google Scholar

3. Xu, X., Wen, Z., Wu, J., Yang, J. Solid State Ionics 2007, 178, 29–34, in Google Scholar

4. Bucharsky, E. C., Schell, K. G., Hintennach, A., Hoffmann, M. J. Solid State Ionics 2015, 274, 77–82, in Google Scholar

5. Ma, Q., Xu, Q., Tsai, C.-L., Tietz, F., Guillon, O. J. Am. Ceram. Soc. 2016, 99, 410–414, in Google Scholar

6. Key, B., Schroeder, D. J., Ingram, B. J., Vaughey, J. T. Chem. Mater. 2012, 24, 287–293, in Google Scholar

7. Epp, V., Ma, Q., Tietz, F., Wilkening, M. Phys. Chem. Chem. Phys. 2015, 17, 32115–32121, in Google Scholar PubMed

8. Vinod Chandran, C., Pristat, S., Witt, E., Tietz, F., Heitjans, P. J. Phys. Chem. C 2016, 120, 8436–8442, in Google Scholar

9. Ma, Q., Guin, M., Naqash, S., Tsai, C.-L., Tietz, F., Guillon, O. Chem. Mater. 2016, 28, 4821–4828, in Google Scholar

10. Naqash, S., Ma, Q., Tietz, F., Guillon, O. Solid State Ionics 2017, 302, 83–91, in Google Scholar

11. Davaasuren, B., Tietz, F. Solid State Ionics 2019, 338, 144–152, in Google Scholar

12. Kotobuki, M., Kobayashi, B., Koishi, M., Mizushima, T., Kakuta, N. Mater. Technol. 2014, 29, A93–A97, in Google Scholar

13. Degen, T., Sadki, M., Bron, E., König, U., Nénert, G. Powder Diffr. 2014, 29, S13–S18, in Google Scholar

14. Hallopeau, L., Bregiroux, D., Rousse, G., Portehault, D., Stevens, P., Toussaint, G., Laberty-Robert, C. J. Power Sources 2018, 378, 48–52, in Google Scholar

15. Woodcock, D. A., Lightfoot, P. J. Mater. Chem. 1999, 9, 2907–2911, in Google Scholar

16. Huang, C. Y., Agrawal, D. K., McKinstry, H. A. J. Mater. Sci. 1995, 30, 3509–3514, in Google Scholar

17. Prasada Rao, R., Maohua, C., Adams, S. J. Solid State Electrochem. 2012, 16, 3349–3354, in Google Scholar

18. Hupfer, T., Bucharsky, E. C., Schell, K. G., Senyshyn, A., Monchak, M., Hoffmann, M. J., Ehrenberg, H. Solid State Ionics 2016, 288, 235–239, in Google Scholar

19. Case, D., McSloy, A. J., Sharpe, R., Yeadel, S. R., Bartlett, T., Cookson, J., Dashjav, E., Tietz, F., Kumar, C. M. N., Goddard, P. Solid State Ionics 2020, 346, 115192, in Google Scholar

20. Oota, T., Yamai, I. J. Am. Ceram. Soc. 1986, 69, 1–6, in Google Scholar

21. Yamai, I., Ota, T. J. Am. Ceram. Soc. 1993, 76, 487–491, in Google Scholar

22. Jackman, S. D., Cutler, R. A. J. Power Sources 2012, 218, 65–72, in Google Scholar

23. Sinclair, D. C. Bol. Soc. Esp. Cerám. Vidrio 1995, 34, 55–65.Search in Google Scholar

24. Kotobuki, M., Koishi, M., Kato, Y. Ionics 2013, 19, 1945–1948, in Google Scholar

25. Rossbach, A., Tietz, F., Grieshammer, S. J. Power Sources 2018, 391, 1–9. and references therein, in Google Scholar

26. Kotobuki, M., Koishi, M. Ceram. Int. 2013, 39, 4645–4649, in Google Scholar

27. Winter, E., Seipel, P., Zinkevich, T., Indris, S., Davaasuren, B., Tietz, F., Vogel, M., Z. Phys. Chem. 2022, 236, 689.10.1515/zpch-2022-1774Search in Google Scholar

28. Lang, B., Ziebarth, B., Elsässer, C. Chem. Mater. 2015, 27, 5040–5048, in Google Scholar

Supplementary Material

The online version of this article offers supplementary material (

Received: 2021-06-28
Accepted: 2021-08-18
Published Online: 2021-09-03
Published in Print: 2022-06-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 6.6.2023 from
Scroll to top button