Abstract
The compound LiNi0.5Mn1.5O4 is used as novel cathode material for Li-ion batteries and represents a variant to replace conventional LiMn2O4. For a further improvement of battery materials it is necessary to understand kinetic processes at and in electrodes and the underlying diffusion of lithium that directly influences charging/discharging times, maximum capacities, and possible side reactions. In the present study Li tracer self-diffusion is investigated in polycrystalline sintered bulk samples of near stoichiometric LiNi0.5Mn1.5O4 with an average grain size of about 50–70 nm in the temperature range between 250 and 600 °C. For analysis, stable 6Li tracers are used in combination with secondary ion mass spectrometry (SIMS). The tracer diffusivities can be described by the Arrhenius law with an activation enthalpy of (0.97 ± 0.05) eV, which is interpreted as the sum of the formation and migration energy of a thermally activated Li vacancy.
Funding source: Deutsche Forschungsgemeinschaft
Award Identifier / Grant number: SCHM 1569/33-1
Award Identifier / Grant number: INST 189/194-1 FUGG
Acknowledgements
The financial support is gratefully acknowledged. We are indebted to K. Meyer for XRD analysis, to G. Zander for ICP-OES analysis and to S. Lenk for SEM measurements. We dedicate this work to Prof. Dr. Paul Heitjans on the occasion of his 75th birthday.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – SCHM 1569/33-1; INST 189/194-1 FUGG.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Korthauer, R., Ed. Handbook Lithium-Ion Batteries, 1st ed.; Springer Berlin; Springer Vieweg: Berlin, 2017.Search in Google Scholar
2. Julien, C., Mauger, A., Vijh, A., Zaghib, K. Lithium Batteries: Science and Technology; Springer International Publishing: Switzerland, 2016.10.1007/978-3-319-19108-9Search in Google Scholar
3. Etacheri, V., Marom, R., Elazari, R., Salitra, G., Aurbach, D. Energy Environ. Sci. 2011, 4, 3243–3262; https://doi.org/10.1039/c1ee01598b.Search in Google Scholar
4. Aifantis, K.E., Ed. High Energy Density Lithium Batteries: Materials, Engineering, Applications; Wiley-VCH-Verl.: Weinheim, 2010.10.1002/9783527630011Search in Google Scholar
5. Bruce, P. G., Scrosati, B., Tarascon, J.-M. Angew Chem. Int. Ed. Engl. 2008, 47, 2930–2946; https://doi.org/10.1002/anie.200702505.Search in Google Scholar PubMed
6. Heitjans, P. Z. Phys. Chem. 2015, 229, 1263–1264; https://doi.org/10.1515/zpch-2015-9033.Search in Google Scholar
7. Blomgren, G. E. J. Electrochem. Soc. 2016, 164, A5019.10.1149/2.0251701jesSearch in Google Scholar
8. Chen, R., Zhao, T., Zhang, X., Li, L., Wu, F. Nanoscale Horizons 2016, 1, 423–444; https://doi.org/10.1039/c6nh00016a.Search in Google Scholar PubMed
9. Xu, J., Dou, S., Liu, H., Dai, L. Nano Energy 2013, 2, 439–442; https://doi.org/10.1016/j.nanoen.2013.05.013.Search in Google Scholar
10. Santhanam, R., Rambabu, B. J. Power Sources 2010, 195, 5442–5451; https://doi.org/10.1016/j.jpowsour.2010.03.067.Search in Google Scholar
11. Xie, J., Kohno, K., Matsumura, T., Imanishi, N., Hirano, A., Takeda, Y., Yamamoto, O. Electrochim. Acta 2008, 54, 376–381; https://doi.org/10.1016/j.electacta.2008.07.067.Search in Google Scholar
12. Xie, J., Tanaka, T., Imanishi, N., Matsumura, T., Hirano, A., Takeda, Y., Yamamoto, O. J. Power Sources 2008, 180, 576–581; https://doi.org/10.1016/j.jpowsour.2008.02.049.Search in Google Scholar
13. Tang, S. B., Lai, M. O., Lu, L. Mater. Chem. Phys. 2008, 111, 149–153; https://doi.org/10.1016/j.matchemphys.2008.03.041.Search in Google Scholar
14. Tang, X., Huang, B., He, Y. J Cent. South Univ. Technol. 2005, 12, 1–4; https://doi.org/10.1007/s11771-005-0360-y.Search in Google Scholar
15. Xia, H., Lu, Li. Phys. Scripta 2007, T129, 43–48; https://doi.org/10.1088/0031-8949/2007/t129/010.Search in Google Scholar
16. Takai, S., Yoshioka, K., Iikura, H., Matsubayashi, M., Yao, T., Esaka, T. Solid State Ionics 2014, 256, 93–96; https://doi.org/10.1016/j.ssi.2014.01.013.Search in Google Scholar
17. Schwab, C., Höweling, A., Windmüller, A., Gonzalez-Julian, J., Möller, S., Binder, J. R., Uhlenbruck, S., Guillon, O., Martin, M. Phys. Chem. Chem. Phys. 2019, 21, 26066–26076; https://doi.org/10.1039/c9cp05128g.Search in Google Scholar PubMed
18. Kuwata, N., Nakane, M., Miyazaki, T., Mitsuishi, K., Kawamura, J. Solid State Ionics 2018, 320, 266–271; https://doi.org/10.1016/j.ssi.2018.03.012.Search in Google Scholar
19. Ishiyama, H., Jeong, S. C., Watanabe, Y. X., Hirayama, Y., Imai, N., Jung, H. S., Miyatake, H., Oyaizu, M., Osa, A., Otokawa, Y., Matsuda, M., Nishio, K., Makii, H., Sato, T. K., Kuwata, N., Kawamura, J., Ueno, H., Kim, Y. H., Kimura, S., Mukai, M. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2016, 376, 379–381; https://doi.org/10.1016/j.nimb.2015.12.036.Search in Google Scholar
20. Verhoeven, V. W., de Schepper, I. M., Nachtegaal, G., Kentgens, A. P., Kelder, E. M., Schoonman, J., Mulder, F. M. Phys. Rev. Lett. 2001, 86, 4314–4317; https://doi.org/10.1103/physrevlett.86.4314.Search in Google Scholar
21. Wu, S.-L., Zhang, W., Song, X., Shukla, A. K., Liu, G., Battaglia, V., Srinivasan, V. J. Electrochem. Soc. 2012, 159, A438; https://doi.org/10.1149/2.062204jes.Search in Google Scholar
22. Xia, H., Tang, S. B., Lu, L., Meng, Y. S., Ceder, G. Electrochim. Acta 2007, 52, 2822–2828; https://doi.org/10.1016/j.electacta.2006.07.013.Search in Google Scholar
23. Heitjans, P., Kärger, J. Diffusion in Condensed Matter: Methods, Materials, Models; Springer Berlin Heidelberg: Berlin, 2006.10.1007/3-540-30970-5Search in Google Scholar
24. Mehrer, H. Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes; Springer Berlin Heidelberg: Berlin, 2007.10.1007/978-3-540-71488-0Search in Google Scholar
25. Belova, I. V., Murch, G. E. Philos. Mag. A 2001, 81, 2447–2455; https://doi.org/10.1080/01418610110038402.Search in Google Scholar
26. Xia, H., Meng, Y. S., Lu, L., Ceder, G. J. Electrochem. Soc. 2007, 154, A737; https://doi.org/10.1149/1.2741157.Search in Google Scholar
27. Hoang, K. J. Mater. Chem. A 2014, 2, 18271–18280; https://doi.org/10.1039/c4ta04116j.Search in Google Scholar
28. Nakayama, M., Kaneko, M., Wakihara, M. Phys. Chem. Chem. Phys. 2012, 14, 13963–13970; https://doi.org/10.1039/c2cp42154b.Search in Google Scholar PubMed
29. Ouyang, C. Y., Shi, S. Q., Wang, Z. X., Li, H., Huang, X. J., Chen, L. Q. EPL 2004, 67, 28–34; https://doi.org/10.1209/epl/i2004-10049-1.Search in Google Scholar
30. Kuwata, N., Hasegawa, G., Maeda, D., Ishigaki, N., Miyazaki, T., Kawamura, J. J. Phys. Chem. C 2020, 124, 22981–22992; https://doi.org/10.1021/acs.jpcc.0c06375.Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston