Abstract
Various nuclear magnetic resonance (NMR) methods are combined to study the structure and dynamics of Li1.5Al0.5Ti1.5(PO4)3 (LATP) samples, which were obtained from sintering at various temperatures between 650 and 900 °C. 6Li, 27Al, and 31P magic angle spinning (MAS) NMR spectra show that LATP crystallites are better defined for higher calcination temperatures. Analysis of 7Li spin-lattice relaxation and line-shape changes indicates the existence of two species of lithium ions with clearly distinguishable jump dynamics, which can be attributed to crystalline and amorphous sample regions, respectively. An increase of the sintering temperature leads to higher fractions of the fast lithium species with respect to the slow one, but hardly affects the jump dynamics in either of the phases. Specifically, the fast and slow lithium ions show jumps in the nanoseconds regime near 300 and 700 K, respectively. The activation energy of the hopping motion in the LATP crystallites amounts to ca. 0.26 eV. 7Li field-gradient diffusometry reveals that the long-range ion migration is limited by the sample regions featuring slow transport. The high spatial resolution available from the high static field gradients of our setup allows the observation of the lithium ion diffusion inside the small (<100 nm) LATP crystallites, yielding a high self-diffusion coefficient of D = 2 × 10−12 m2/s at room temperature.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Janek, J., Zeier, W. G. Nat. Energy 2016, 1, 16141; https://doi.org/10.1038/nenergy.2016.141.Search in Google Scholar
2. Xiao, W., Wang, J., Fan, L., Zhang, J., Li, X. Energy Storage Mater. 2019, 19, 379–400; https://doi.org/10.1016/j.ensm.2018.10.012.Search in Google Scholar
3. DeWees, R., Wang, H. ChemSusChem 2019, 12, 3713–3725; https://doi.org/10.1002/cssc.201900725.Search in Google Scholar PubMed
4. Mizuno, F., Hayashi, A., Tadanaga, K., Tatsumisago, M. Adv. Mater. 2005, 17, 918–921; https://doi.org/10.1002/adma.200401286.Search in Google Scholar
5. Spannenberger, S., Miß, V., Klotz, E., Kettner, J., Cronau, M., Ramanayagam, A., di Capua, F., Elsayed, M., Krause-Rehberg, R., Vogel, M., Roling, B. Solid State Ionics 2019, 341, 115040; https://doi.org/10.1016/j.ssi.2019.115040.Search in Google Scholar
6. Seino, Y., Ota, T., Takada, K., Hayashi, A., Tatsumisago, M. Energy Environ. Sci. 2014, 7, 627–631; https://doi.org/10.1039/c3ee41655k.Search in Google Scholar
7. Tatsumisago, M., Hayashi, A. Solid State Ionics 2012, 225, 342–345; https://doi.org/10.1016/j.ssi.2012.03.013.Search in Google Scholar
8. Arbi, K., Mandal, S., Rojo, J. M., Sanz, J. Chem. Mater. 2002, 14, 1091–1097; https://doi.org/10.1021/cm010528i.Search in Google Scholar
9. Arbi, K., Hoelzel, M., Kuhn, A., Garcia-Alvardo, F., Sanz, J. Chem. Mater. 2002, 14, 1091–1097; https://doi.org/10.1021/cm010528i.Search in Google Scholar
10. Rettenwander, D., Welzl, A., Pristat, S., Tietz, F., Taibl, S., Redhammer, G. J., Fleig, J. J. Mater. Chem. A 2016, 4, 1506–1513; https://doi.org/10.1039/c5ta08545d.Search in Google Scholar
11. Hupfer, T., Bucharsky, E. C., Schell, K. G., Senyshyn, A., Monchak, M., Hoffmann, M. J., Ehrenberg, H. Solid State Ionics 2016, 288, 235–239; https://doi.org/10.1016/j.ssi.2016.01.036.Search in Google Scholar
12. Shin, Y. K., Sengul, M. Y., Jonayat, A. S. M., Lee, W., Gomez, E. D., Randall, C. A., van Duin, A. C. T. Phys. Chem. Chem. Phys. 2018, 20, 22134–22147; https://doi.org/10.1039/c8cp03586e.Search in Google Scholar
13. Davaasuren, B., Tietz, F. Solid State Ionics 2019, 338, 144–152; https://doi.org/10.1016/j.ssi.2019.05.016.Search in Google Scholar
14. Best, A. S., Forsyth, M., MacFarlane, D. R. Solid State Ionics 2000, 136–137, 339–344; https://doi.org/10.1016/s0167-2738(00)00493-8.Search in Google Scholar
15. Key, B., Schroeder, D. J., Ingram, B. J., Vaughey, J. T. Chem. Mater. 2012, 24, 287–293; https://doi.org/10.1021/cm202773d.Search in Google Scholar
16. Epp, V., Ma, Q., Hammer, E.-M., Tietz, F., Wilkening, M. Phys. Chem. Chem. Phys. 2015, 17, 32115–32121; https://doi.org/10.1039/c5cp05337d.Search in Google Scholar PubMed
17. Chandran, C. V., Pristat, S., Witt, E., Tietz, F., Heitjans, P. J. Phys. Chem. C 2016, 120, 8436–8442; https://doi.org/10.1021/acs.jpcc.6b00318.Search in Google Scholar
18. Wilkening, M., Heitjans, P. ChemPhysChem 2012, 13, 53–65; https://doi.org/10.1002/cphc.201100580.Search in Google Scholar PubMed
19. Chandran, C. V., Heitjans, P. Annu. Rep. NMR Spectrosc. 2016, 89, 1–102; https://doi.org/10.1016/bs.arnmr.2016.03.001.Search in Google Scholar
20. Böhmer, R., Jeffrey, K. R., Vogel, M. Prog. Nucl. Magn. Reson. Spectrosc. 2007, 50, 87–174; https://doi.org/10.1016/j.pnmrs.2006.12.001.Search in Google Scholar
21. Böhmer, R., Storek, M., Vogel, M. In Modern Methods in Solid-state NMR: A Practitioner’s Guide, New Developments in NMR; The Royal Society of Chemistry: Cambridge, 2018; pp. 193–230.10.1039/9781788010467-00193Search in Google Scholar
22. Böhmer, R., Jörg, T., Qi, F., Titze, A. Chem. Phys. Lett. 2000, 316, 419–424; https://doi.org/10.1016/s0009-2614(99)01297-x.Search in Google Scholar
23. Wilkening, M., Küchler, W., Heitjans, P. Phys. Rev. Lett. 2006, 97, 065901; https://doi.org/10.1103/physrevlett.97.065901.Search in Google Scholar
24. Kuhn, A., Kunze, M., Sreeraj, P., Wiemhöffer, H.-D., Thangadurai, V., Wilkening, M., Heitjans, P. Solid State Nucl. Magn. Reson. 2012, 42, 2–8; https://doi.org/10.1016/j.ssnmr.2012.02.001.Search in Google Scholar PubMed
25. Graf, M., Kresse, B., Privalov, A. F., Vogel, M. Solid State Nucl. Magn. Reson. 2013, 51–52, 25–30; https://doi.org/10.1016/j.ssnmr.2013.01.001.Search in Google Scholar PubMed
26. Kuhn, A., Dupke, S., Kunze, M., Puravankara, S., Langer, T., Pöttgen, R., Winter, M., Wiemhöffer, H.-D., Eckert, H., Heitjans, P. J. Phys. Chem. C 2014, 118, 28350–28360; https://doi.org/10.1021/jp505386u.Search in Google Scholar
27. Storek, M., Tilly, J. F., Jeffrey, K. R., Böhmer, R. J. Magn. Reson. 2017, 282, 1–9; https://doi.org/10.1016/j.jmr.2017.06.010.Search in Google Scholar PubMed
28. Wilkening, M., Bork, D., Indris, S., Heitjans, P. Phys. Chem. Chem. Phys. 2002, 4, 3246–3251; https://doi.org/10.1039/b201193j.Search in Google Scholar
29. Heitjans, P., Indris, S. J. Phys. Condens. Matter 2003, 15, R1257–R1289; https://doi.org/10.1088/0953-8984/15/30/202.Search in Google Scholar
30. Faske, S., Eckert, H., Vogel, M. Phys. Rev. B 2008, 77, 104301; https://doi.org/10.1103/physrevb.77.104301.Search in Google Scholar
31. Storek, M., Böhmer, R., Martin, S. W., Larink, D., Eckert, H. J. Chem. Phys. 2012, 137, 124507; https://doi.org/10.1063/1.4754664.Search in Google Scholar PubMed
32. Langer, J., Epp, V., Heitjans, P., Mautner, F. A., Wilkening, M. Phys. Rev. B 2013, 88, 094304; https://doi.org/10.1103/physrevb.88.094304.Search in Google Scholar
33. Dupke, S., Langer, T., Winter, F., Pöttgen, R., Winter, M., Eckert, H. Solid State Nucl. Magn. Reson. 2015, 65, 99–106; https://doi.org/10.1016/j.ssnmr.2014.11.003.Search in Google Scholar PubMed
34. Haaks, M., Martin, S. W., Vogel, M. Phys. Rev. B 2017, 96, 104301; https://doi.org/10.1103/physrevb.96.104301.Search in Google Scholar
35. Vyalikh, A., Schikora, M., Seipel, K. P., Weigler, M., Zschornak, M., Meutzner, F., Münchgesang, W., Nestler, T., Vizgalov, V., Itkis, D., Privalov, A. F., Vogel, M., Meyer, D. C. J. Mater. Chem. A 2019, 7, 13968–13977; https://doi.org/10.1039/c8ta11686e.Search in Google Scholar
36. Winter, E., Seipel, P., Miß, V., Spannenberger, S., Roling, B., Vogel, M. J. Phys. Chem. C 2020, 124, 28614–28622; https://doi.org/10.1021/acs.jpcc.0c08801.Search in Google Scholar
37. Gabriel, J., Petrov, O. V., Kim, Y., Martin, S. W., Vogel, M. Solid State Nucl. Magn. Reson. 2015, 70, 53–62; https://doi.org/10.1016/j.ssnmr.2015.06.004.Search in Google Scholar PubMed
38. Bloembergen, N., Purcell, E. M., Pound, R. V. Phys. Rev. 1948, 73, 679–712.10.1103/PhysRev.73.679Search in Google Scholar
39. Bertermann, R., Müller-Warmuth, W. Z. Naturforsch 1998, 53 a, 863–873; https://doi.org/10.1515/zna-1998-10-1110.Search in Google Scholar
40. Kruk, D., Herrmann, A., Rössler, E. A. Prog. Nucl. Magn. Reson. Spectrosc. 2012, 63, 33–64; https://doi.org/10.1016/j.pnmrs.2011.08.001.Search in Google Scholar PubMed
41. Fujara, F., Kruk, D., Privalov, A. F. Prog. Nucl. Magn. Reson. Spectrosc. 2014, 82, 39–69; https://doi.org/10.1016/j.pnmrs.2014.08.002.Search in Google Scholar PubMed
42. Schneider, S., Vogel, M. J. Chem. Phys. 2018, 149, 104501; https://doi.org/10.1063/1.5047825.Search in Google Scholar PubMed
43. Schneider, S., Vogel, M. J. Chem. Phys. 2020, 153, 244501; https://doi.org/10.1063/5.0036079.Search in Google Scholar PubMed
44. Tanner, J. E. J. Chem. Phys. 1970, 52, 2523–2526; https://doi.org/10.1063/1.1673336.Search in Google Scholar
45. Kärger, J., Avramovska, M., Freude, D., Haase, J., Hwang, S., Valiullin, R. Adsorption 2021, 27, 453–484; https://doi.org/10.1007/s10450-020-00290-9.Search in Google Scholar
46. Maldonado-Manso, P., Martín-Sedeño, M., Bruque, S., Sanz, J., Losilla, E. R. Solid State Ionics 2007, 178, 43–52; https://doi.org/10.1016/j.ssi.2006.11.016.Search in Google Scholar
47. Arbi, K., Bucheli, W., Jiménez, R., Sanz, J. J. Eur. Ceram. Soc. 2015, 35, 1477–1484; https://doi.org/10.1016/j.jeurceramsoc.2014.11.023.Search in Google Scholar
48. Mason, J., Ed. Multinuclear NMR; Plenum Press: New York, 1987.10.1007/978-1-4613-1783-8Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston