Accessible Requires Authentication Published by De Gruyter August 14, 2021

Additive Fertigung eines hybriden Planetenträgers

Additive Manufacturing of a Hybrid Planet Carrier
Thomas Papke, Dominic Bartels, Harald Hofmann, Ruslana Mys, Michael Schmidt and Marion Merklein

Abstract

Die Gestaltungsfreiheit der additiven Fertigung wird in diesem Beitrag auf einen Planetenträger angewendet. Hierbei erfolgt die Fertigung des additiv gefertigten Volumens auf einem Grundkörper, der Bestandteil des Planetenträgers ist. Dadurch wird eine höhere Steifigkeit erreicht, die unter Torsionsbelastung – im Vergleich zu einer konventionell gefertigten Variante – doppelt so hoch ist. Bei dem Hybridansatz sind die Kosten bei höheren Stückzahlen gegenüber einer rein additiven Fertigung um 6 Prozent geringer.

Abstract

The opportunity of freedom in design of additive manufacturing is applied to a planet carrier. Additive manufacturing starts on a conventionally manufactured base body, which is part of the planet carrier. This enables increased stiffness compared to the conventional design. Torsion tests show that stiffness can be doubled. Compared to singular additive manufacturing, costs decrease due to the hybrid design by 6 % for higher lot sizes.


Tel.: +49 (0) 9132 823090

Danksagung

Diese Arbeit wurde vom Schaeffler Hub for Advanced Research at Friedrich-Alexander-University (SHARE at FAU) gefördert. Das SHARE at FAU ist Teil des Automobil- und Industriezulieferers Schaeffler.

Literatur

1 Merklein, M.; Junker, D.; Schaub, A.; Neubauer, F.: Hybrid Additive Manufacturing Technologies – An Analysis Regarding Potentials and aApplications. Physics Procedia: 9th International Conference on Photonic Technologies – LANE, 2016, S. 549–559 10.1016/j.phpro.2016.08.057 Search in Google Scholar

2 Hirtler, M.; Jedynak, A.; Sydow, B.; Sviridov, A.; Bambach, M.: Investigation of Microstructure and Hardness of a Rib Geometry Produced by Metal Forming and Wire-arc Additive Manufacturing. Matec Web of Conferences: International Conference on New Forming Technologies – ICNFT 190 (2018), 02005-1-02005-6 10.1051/matecconf/201819002005 Search in Google Scholar

3 Gläßner, C.; Yi, L.; Aurich, J. C.: Concept for Development of Additive Process Chains in Manufacturing Companies. In: Schmitt, R.; Schuh, G. (Hrsg.): Advances in Production Research – Proceedings of the 8th Congress of the German Academic Association for Production Technology (WGP). Cham, Switzerland 2018 10.1007/978-3-030-03451-1_34 Search in Google Scholar

4 Yi, L.; Gläßner, C.; Aurich, J. C.: How to Integrate Additive Manufacturing Technologies into Manufacturing Systems Successfully: A perspective from the Commercial Vehicle Industry. Journal of Manufacturing Systems 53 (2019), S. 195–211 10.1016/j.jmsy.2019.09.007 Search in Google Scholar

5 Schaub, A.; Ahuja, B.; Karg, M.; Schmidt, M.; Merklein, M.: Fabrication and Characterization of Laser Beam Melted Ti-6Al-4V Geometries on Sheet Metal. In: Demmer, A. (Hrsg.): Proc. Fraunhofer Direct Digital Manufacturing Conference – DDMC 2014 Search in Google Scholar

6 Butzhammer, L.; Dubjella, P.; Huber, F.; Schaub, A.; Aumüller, M.; Baum, A.; Petrunenko, O.; Merklein, M.; Schmidt, M.: Experimental Investigation of a Process Chain Combining Sheet Metal Bending and Laser Beam Melting of Ti-6Al-4V. Lasers in Manufacturing LIM 2017, 2017, 137/1–11 Search in Google Scholar

7 Merklein, M.; Schulte, R.; Papke, T.: An Innovative Process Combination of Additive Manufacturing and Sheet Bulk Metal Forming for Manufacturing a Functional Hybrid Part. Journal of Materials Processing Technology 291 (2021), 117032 10.1016/j.jmatprotec.2020.117032 Search in Google Scholar

8 Huber, F.; Papke, T.; Kerkien, M.; Tost, F.; Geyer, G.; Merklein, M.; Schmidt, M.: Customized Exposure Strategies for Manufacturing Hybrid Parts by Combining Laser Beam Melting and Sheet Metal Forming. In: Proceedings of the International Congress of Applications of Lasers & Electro-Optics (ICALEO®), 2018, 22318 10.2351/1.5096115 Search in Google Scholar

9 Tebaay, L M.; Hahn, M.; Tekkaya, A. E.: Distortion and Dilution Behavior for Laser Metal Deposition onto Thin Sheet Metals. International Journal of Precision Engineering and Manufacturing-Green Technology, 7 (2020) 3, S. 625-634 10.1007/s40684-020-00203-9 Search in Google Scholar

10 Papke, T.; Merklein, M.: Processing of 316L Hybrid Parts Consisting of Sheet Metal and Additively Manufactured Element by Powder Bed Fusion Using a Laser Beam. Procedia CIRP 94 (2020), S. 35–40 10.1016/j.procir.2020.09.008 Search in Google Scholar

11 Kumke, M.; Watschke, H.; Vietor, T.: A New Methodological Framework for Design for Additive Manufacturing. Virtual and Physical Prototyping 11 (2016) 1, S. 3–19 10.1080/17452759.2016.1139377 Search in Google Scholar

12 Klahn, C.; Leutenecker, B.; Meboldt, M.: Design for Additive Manufacturing – Supporting the Substitution of Components in Series Products. Procedia CIRP 21 (2014), S. 138–143 10.1016/j.procir.2014.03.145 Search in Google Scholar

13 Klahn, C.; Meboldt, M.; Fontana, F.; Leutenecker-Twelsiek, B.; Jansen, J.: Gestaltungsleitfaden für die Additive Fertigung. In: Klahn, C.; Meboldt, M. (Hrsg.): Entwicklung und Konstruktion für die Additive Fertigung. Vogel Communications Group, Würzburg 2018, S. 107–152 Search in Google Scholar

14 Bambach, M.; Sviridov, A.; Weisheit, A.: Stiffness Management of Sheet Metal Parts Using Llaser Metal Deposition, 1896/1. American Institute of Physics: AIP Conference Proceedings, 2017, 080014-1-080014-6 10.1063/1.5008094 Search in Google Scholar

15 Bambach, M.; Sviridov, A.; Weisheit, A.; Schleifenbaum, J. H.: Case Studies on Local Reinforcement of Sheet Metal Components by Laser Additive Manufacturing. Metals 7 (2017) 4, Art. 113 10.3390/met7040113 Search in Google Scholar

Published Online: 2021-08-14
Published in Print: 2021-08-31

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany