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Abstract. On the basis of X-ray diffraction analysis performed on polycrystalline cementite 
(Fe3C) layers grown on α-iron substrates, a distinctly positive correlation of the macrostrain 
(as revealed by the sample-tilting angle dependent peak positions) and of the microstrain (as 
revealed by the corresponding peak broadening) pertaining to different hkl, respectively, was 
observed. In fact, the hkl dependences of both quantities are similar. This can be understood 
by the strong dependences of both macro- and microstrain on some average values of the 
(anisotropic) elastic constants along the diffraction vector. 

Introduction 
Macrostressed polycrystalline thin surface layers (i.e. subjected to mechanical stress) will in 
case of intrinsic elastic anisotropy and variable grain orientation also exhibit microstrain. 
Whereas the macrostrain leads to typical sample-orientation peak shifting, the microstrain 
distribution will lead to broadening of the diffraction peaks. Macrostrain and microstrain 
may provide valuable information about the overall state of stress/strain in the layer, i.e. the 
average values and the distributions, see e.g. [1]. However, most macrostress studies by 
diffraction techniques, e.g. using the sin2ψ-method [2], do not consider the line broadening of 
the diffraction peaks. That may be partly due to the often relatively large instrumental 
broadening of the diffractometers dedicated to (macro)stress analysis, masking the structural 
line broadening. 
In the course of X-ray diffraction (macro)stress measurements performed on cementite 
(Fe3C) layers grown on α-iron substrates using gaseous nitrocarburising [3], the instrumental 
configuration was chosen such to allow combining the possibility for specimen tilting with 
high instrumental resolution. The results of the macrostress analysis were published previ-
ously [4]. The present work addresses the state of microstrain in the Fe3C layer, in particular 
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with reference to the state of (elastic) macrostrain. At first, in section “Macrostrains and 
microstrains”, the effect of single-crystal elastic anisotropy both on the anisotropic 
macrostrain and on the anisotropic microstrain is discussed. This serves as basis for the data 
evaluation in section “Results and discussion”.  

Macrostrains and microstrains 
Consider a rigid substrate with a thin surface layer, which exhibits in the plane parallel to the 
surface isotropic residual macrostress σII. For a given hkl the macrostress leads to a ψ- 
dependent peak(-centroid) shift with respect to the position pertaining to the strain-free state 
(index 0). From this shift the corresponding (average) hkl- and ψ-dependent elastic 
macrostrain 〈Δεhkl(ψ)〉 can be calculated according to: 
〈Δ(2θhkl(ψ))〉 = 〈2θhkl(ψ)〉 − 2θ0,hkl = −2〈Δεhkl(ψ)〉tanθ0,hkl.       (1) 
Neglecting the occurrence of macroscopic elastic anisotropy (in the specimen frame of refer-
ence; e.g. due to texture, anisotropic grain interaction [2], ….), the hkl- and ψ-dependent 
elastic macrostrain measured according to eq. (1) is related with the macrostress σII by [2] 

( ) ( ) ( ) ( )( )2 21
1 222 sin 0 90 0hkl hkl

hkl hkl hkl hklS S sinε ψ σ σ ψ ε ε ε= + = ° + ° − °II II ψ ,     (2) 

with  and ½  as the hkl-dependent X-ray elastic constants (XECs). These XECs can 
be regarded as averages of certain single-crystal elastic constants (SECs) along the direction 
of the diffraction vector (in the crystal's frame of reference) according to  = 〈−ν/E)〉hkl 
and ½ = 〈(1+ν)/E)〉hkl (with E being the Young’s modulus, and with ν being the Poisson 
ratio), where the type of averaging depends on the type of grain interaction.  and ½  
can straightforwardly be calculated for certain types of (here isotropic) grain interaction from 
the single-crystal elastic constants [
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2], in particular for the extreme cases of Voigt- and 
Reuss-type grain interactions. For the Voigt case the XECs  and V
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pendent from hkl. For the Reuss case the XECs  and R,
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hklS  can be expressed as 4th-
order polynomials in the components x1, x2 and x3 of a unit vector x(hkl) parallel to the dif-
fraction vector of the peak hkl (expressed with respect to the crystal frame of reference, a 
Cartesian coordinate system defined in a given way with respect to the crystallographic 
coordinate system with the basis vectors a, b and c): 
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applying the Einstein summation convention. In eq. (3) both polynomials are symmetry 
invariant with respect to the crystal class, and the coefficients  present combinations 

of SECs. The  coefficients are equal for an arbitrary permutation of i, j, p and q. 
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It has been suggested that for an intermediate character of grain interaction, one may employ 
some weighted averages of the Reuss type and Voigt type XECs (formulas given in ref. [5]), 

( )V
1,2 1,2 1,21hkl hklS wS w S= + − ,            (4) 

with an hkl-independent weighing factor w (0 ≤ w ≤ 1), which may be determined by fitting 
on the basis of data pertaining to different hkl. Due to the hkl-independent  and V

1S V1
22 S , and 
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in view of eq. (3), also the overall  in eq. (4) can be expressed as 4th-order polynomials 
in x1, x2, and x3, e.g. with the polynomial coefficients R1,ijpq and R2,ijpq, analogously to eq. (3): 

1,2
hklS

,ijpq i jx1 1,
hkl

ijpq i j p qS R x x x x=  and .             (5) 2 2
hkl

p qS R x x x=

Irrespective of the relatively complex formulas leading to eq. (5), it is obviously expected 
that the change in macrostrain with ψ varying from 0° to 90° amounting 

( ) ( )90 0hkl hklε ε° − ° = 1
22
hklS σ II  (this quantity is called for simplicity in the following the 

macrostrain) will be large if the direction of the diffraction vector given by x(hkl) in the 
crystal frame of reference corresponds to an elastically compliant direction of the crystal and 
small if a stiff direction is concerned. 
The strain in the specimen along the diffraction vector is usually not constant but is distrib-
uted. The variance of the microstrain distribution along the diffraction vector, 〈(εhkl − 〈εhkl〉)2〉 
= 〈(Δεhkl)2〉 (a possible ψ dependence of the variance is not indicated here, e.g. by 
〈(Δεhkl(ψ))2〉 because no systemetic variation with ψ was found), appears as microstrain 
broadening on the diffraction scale as (strain is assumed to be constant in each coherently 
diffracting crystallite) 
〈(Δ2θhkl)2〉 = 4tan2θ0,hkl〈(Δεhkl)2〉.          (6) 
Like it is the case for  under the above-mentioned assumptions (cf. eq. (5)), also the 
variance 〈(Δεhkl)2〉 can be expressed as a symmetry-invariant 4th-order polynomial in x1, x2, 
and x3: 

1,2
hklS

〈(Δεhkl)2〉 = Zijpqxixjxpxq,           (7) 
where, again, like in eq. (3) and eq. (5), the Zijpq coefficients are equal for an arbitrary per-
mutation of i, j, p, and q. These Zijpq coefficients are connected with the variances and/or the 
covariances of the distribution of the strain-tensor components over the diffracting grains 
formulated with respect to the crystal frame of reference as used for the vector x(hkl) [6]. In 
the course of a phenomenological assessment of the microstrain broadening like in the course 
of a Rietveld refinement, the Zijpq coefficients can be refined as parameters. 
It is noted that in practice, the microstrain broadening often exhibits a pseudo-Voigt like 
shape, which has no finite variance. In order to avoid this complication instead of the vari-
ance of the line broadening or of the microstrain along the diffraction vector in eq. (6) and 
eq. (7), the corresponding squared Full-Width at Half Maxima (FWHMs), 2

2 hkl
B θΔ  and 2

hkl
B εΔ , 

will be employed. The corresponding coefficients in eq. (7) then are indicated by B
ijpqZ . 

Values for the Zijpq or the B
ijpqZ  parameters can be derived for different types of models for 

the microstrain distribution pertaining to various physical origins: different types of isotropic 
field-tensor variations connected with strain via anisotropic property tensors [7], microstrains 
due to dislocations [8, 9], or thermal microstrain estimated employing maximum entropy 
method [10]. Refs. [7-10] deal, in particular, with cases of microstress distributions and cor-
responding microstrain distributions connected with each other via the intrinsic elastic ani-
sotropy. In all these cases the elastic anisotropy in some way affects the Zijpq coefficients and 
determines their values.  
In general, without adopting a particular physical model for the microstrain distribution, like 
[7-10], one may expect that peaks hkl show in particular large microstrain broadening, if the 
crystal direction parallel to the diffraction vector is in particular elastically compliant. This 
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statement is analogous to that below eq. (5) concerning the x(hkl) dependence of ½ 2
hklS σ II . 

Thus, if anisotropy of the microstrain broadening is determined by the anisotropy of the 
single-crystal elastic compliance, the x(hkl) dependency of 2

hkl
B εΔ  should be similar to that of 

½ 2
hklS σ II .  

Experimental 
A massive, polycrystalline Fe3C layer (thickness 4.6 μm) was grown on a plate-like α-iron 
substrate (thickness 1 mm) by a dedicated nitrocarburisation procedure [3, 4]. High-resolu-
tion X-ray powder-diffraction experiments on this layer were performed at HASYLAB, 
Hamburg, Germany. Station B2 was equipped with a Eulerian cradle and operated with a 
wavelength of 0.79323 Å, which is sufficiently small to ensure negligible absorption of ra-
diation within the Fe3C layer. An analyser crystal in the diffracted beam ensured narrow 
instrumental profiles, which were determined by measuring peaks of a LaB6 (NIST 
SRM660a) standard sample. During the measurements both specimens (Fe3C and LaB6) were 
rotated around their surface normal to achieve better crystallite statistics. A selected number 
of peaks were measured at different sample tilting angles ψ for both specimens. 
Data evaluation was carried out with the TOPAS [11] software. The instrumental profile was 
determined by fitting of split-Pseudo Voigt functions to the LaB6 peaks. The instrumental 
profile shape and width parameters pertaining to different Bragg angles were interpolated by 
means of polynomials to determine values at arbitrary Bragg angles. On this basis the peak 
profiles recorded from the Fe3C layer were evaluated by convoluting the instrumental-profile 
function at the respective Bragg angle with a split pseudo-Voigt function, representing the 
physical line broadening, with fitted shape and width parameters. The peak positions as well 
as the FWHMs of the physical line broadening, 2 hklB θΔ , for various hkl were the basis for the 
further evaluations. 

Results and discussion 
The ψ-dependent peak shifts had been used in order to evaluate the Fe3C layer's state of 
macrostrain and macrostress [4]. To this end SECs from first-principles calculations had 
been used for calculation of XECs according to eq. (4), yielding a compressive (mechanical) 
macrostress of σ II  = −440 MPa. The macrostrains ½ 2

hklS σ II ( ) ( )90 0hkl hklε ε= ° − °  in the 

sin2ψ plots (macrostrain) according to eq. (2) vary significantly with hkl, as expected for hkl-
dependent XECs. This reflects the extreme elastic anisotropy indicated by the SECs (very 
small C2323 vs. 10 × larger C1313 and C1212), which leads to the largest peak shifts from (ψ = 
0° to 90°) for peaks with small h and simultaneously large k and l (indices and tensors refer 
to the Pnma setting of the cementite's crystal structure). 
The line widths vary primarily (also) with hkl; slight variations with ψ occur, too, but no 
systematic ψ dependency can be discerned. Therefore, in the following the averaged values 
of the line widths recorded at ψ = 25° and 37° are used. Further, it is assumed that the com-
plete physical line broadening is of microstrain type. Thus, using eq. (6), using the squared 
FWHMs instead of the variances, one can calculate 2

hkl
B εΔ . The 2

hkl
B εΔ  values have been plot-



Z. Kristallogr. Suppl. 30 (2009) 107  

ted versus the ½ 2
hklS σ II ( ) ( )90 0hkl hklε ε= ° − °  in figure 1. Evidently, a clear positive 

correlation occurs: correlation factor of 0.80, although a few systematic outliers occur (e.g. 
002). Note that this analysis is possible simply on the basis of the bare experimental data, 
without knowledge of values for the XECs.  
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Figure 1. Comparison of the squared FWHM values of the microstrain distribution along the 
diffraction vector with the slopes of sin2ψ plots (macrostrain) according to eq. (2) for various hkl.  
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Figure 2. (a) and (b): Tensor surfaces (drawn with Wintensor [12]) representing microstructural prop-
erties of the cementite layers as a function of the direction x(hkl) of the diffraction vector in the crystal 
coordinates: (a) slopes of the sin2ψ plots (macrostrain) and (b) squared FWHM of the microstrain 
distribution along the diffraction vector. The tensor surface in (c) illustrates the direction dependence 
of the reciprocal Young’s modulus [4]. 

Moreover, the similar anisotropies of the macrostrain (½ 2
hklS σ II ( ) ( )90 0hkl hklε ε= ° − ° ) 

and of the microstrain ( 2
hkl

B εΔ ) in the crystal frame of reference can be illustrated on the basis 
of tensor surfaces representing the direction dependencies of these quantities: see figure 2. 
For that purpose, on the basis of the experimental data for different hkl, 6 different coeffi-
cients ½ R

2,ijpqR σ II  representing the macrostrain were fitted on the basis of the ½ 2
hklS σ II  data 

(eq. (5)) and analogously 6 different coefficients B
ijpqZ  representing the microstrain were 

fitted on the basis of the 2
hk

B
lεΔ  data (eq. (7); using the squared FWHMs instead of the vari-
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ances). The number of 6 coefficients follows from the invariance with respect to the ortho-
rhombic symmetry of Fe3C [6]. Indeed, the surfaces look qualitatively similar. They both 
also resemble the tensor surface describing the direction dependence of the reciprocal 
Young’s modulus 1/Ehkl = Sijpqxixjxpxq (also shown in figure 2), which demonstrates the soft-
ness of directions intermediate between [010] and [001]. This softness is a direct conse-
quence of the small shear modulus C2323 mentioned above.  
The remaining differences in the precise shapes of the tensor surfaces are e.g. related with 
the averaging necessary for going from the SECs (fig. 2c) to the XECs (contained in fig. 2b). 
Moreover, different models exist (and more are imaginable) for how elastic anisotropy may 
show up microstrain [7-10].  

Conclusion 
The intrinsic anisotropic elastic properties of a solid may be exhibited by the anisotropy of 
the observed elastic macrostrain and of elastic microstrain: Elastically compliant directions 
exhibit larger values of macrostrain and of microstrain than stiff directions.  
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