Crystal structure of 5-iodo-1-tosylpyrimidine-2,4(1H,3H)-dione, C11H9IN2O4S

Da-Shuai Li, Ji-Cheng Yi, Liang-Ping Shao, Ya-Juan Zhao and Jing Xiong*

College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang Province, P. R. China

Received November 19, 2012, accepted May 07, 2013, available online May 17, 2013, CCDC no. 1267/3985

Abstract

C11H9IN2O4S, monoclinic, P21/c (no. 14), a = 14.771(3) Å, b = 4.8338(8) Å, c = 23.234(3) Å, β = 125.874(8)°, V = 1344.3 Å³, Z = 4, Rgt(F) = 0.0265, wRref(F²) = 0.0885, T = 298 K.

Source of material

5-Iodouracil (2.38 g, 10 mmol), 4-methylbenzene-1-sulfonyl chloride (1.90 g, 10 mmol), triethyl amine (0.25 mL) and acetone (30 mL) were added into a flask and stirred at 333 K for 2 hours. The solid was obtained after removal of acetone and washing by ethyl acetate (20 mL). The purified product was dissolved in ethanol and single crystals were separated after a few days.

Experimental details

All H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of C(sp²)–H = 0.93 Å with Uiso = 1.2Ueq (parent atom), N–H = 0.86 Å with Uiso = 1.2Ueq (parent atom) and C(methyl)–H = 0.96 Å with Uiso = 1.5Ueq (C11).

Discussion

Uracil and its derivatives exhibit a broad spectrum of activity, and have been used as antitumor, antibacterial, and antiviral drugs [1-3]. For example, 5-fluourouracil was known one of the anticancer agents used clinically for the treatment of stomach, colorectal, and neck cancers [4, 5]. 5-nitouracil was known to inhibit thymidine phosphorylase [6] and some of 5-nitouracil derivatives exhibit significant pharmacological activity [7, 8]. Interest in modification of 5-substituted uracils at N-1 position, we herein describe the synthesis and crystal structure of a 5-iodouracil derivative, namely 5-iodo-1-tosylpyrimidine-2,4(1H,3H)-dione. In the molecule, the aromatic ring is slightly deformed. The differences in C–C bond lengths do not exceed 0.01 Å. The ring is almost planar with an r.m.s. deviation of 0.003 Å. The atoms (C1, C2, C3, C4, N1 and N2) in the heterocyclic ring are slightly puckered, with an r.m.s. deviation of 0.0217 Å. The dihedral angle between the two planes is 80.4°. The geometric parameters of the p-tosyl group are within normal ranges. The effects of conjugation in the heterocyclic ring are evident for the bond length to N1, N2, which are 1.380(4) Å and 1.406(4) Å for N1–C4 and N1–C1, 1.373(4) Å and 1.377(4) Å for N2–C1 and N2–C2, respectively. The values are significantly shorter than the N–C single bond of 1.48 Å [9]. Meanwhile, the C2–C3 bond lengths 1.446(4) Å is shorter than a typical C–C bond length [1.499(6) Å], longer than C3–C4 double bond [1.330(4) Å], the partial double bond character is presumed as a result of the electron delocalization in the heterocyclic ring. Molecules of the title structure are pairwise connected by two symmetry related N–H···O hydrogen bonds (N2–H2···O2i; symmetry code i: -x+1, -y+1, -z+1; d(N2···O2i = 2.865(4) Å).

Table 1. Data collection and handling.

Crystal: colourless rods, size 0.13×0.18×0.35 mm
Wavelength: Mo Kα radiation (0.71073 Å)
µ: 25.48 cm⁻¹
DiffraXector, scan mode: Bruker APEX II area-detector, ϕ and ω
Criterion for Iobs, N(hkl)gt: 0.003 Å
Criterion for Iobs, N(hkl)gt: Iobs > 2σ(Iobs), 2160
N(param)refined: 173
Programs: SHELX [10], SMART, SAINT, XP [11]

Table 2. Atomic coordinates and displacement parameters (in Å²).

<table>
<thead>
<tr>
<th>Atom</th>
<th>Site</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Uiso</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(2)</td>
<td>4e</td>
<td>0.5197</td>
<td>0.2880</td>
<td>0.4686</td>
<td>0.050</td>
</tr>
<tr>
<td>H(4)</td>
<td>4e</td>
<td>0.8789</td>
<td>0.0850</td>
<td>0.5709</td>
<td>0.042</td>
</tr>
<tr>
<td>H(6)</td>
<td>4e</td>
<td>0.9088</td>
<td>0.1418</td>
<td>0.4448</td>
<td>0.054</td>
</tr>
<tr>
<td>H(7)</td>
<td>4e</td>
<td>0.8989</td>
<td>0.4114</td>
<td>0.3594</td>
<td>0.061</td>
</tr>
<tr>
<td>H(9)</td>
<td>4e</td>
<td>0.5867</td>
<td>0.1522</td>
<td>0.2149</td>
<td>0.062</td>
</tr>
<tr>
<td>H(10)</td>
<td>4e</td>
<td>0.5953</td>
<td>-0.1189</td>
<td>0.2999</td>
<td>0.056</td>
</tr>
<tr>
<td>H(11A)</td>
<td>4e</td>
<td>0.7924</td>
<td>0.6274</td>
<td>0.2456</td>
<td>0.101</td>
</tr>
<tr>
<td>H(11B)</td>
<td>4e</td>
<td>0.6639</td>
<td>0.5687</td>
<td>0.1932</td>
<td>0.101</td>
</tr>
<tr>
<td>H(11C)</td>
<td>4e</td>
<td>0.7493</td>
<td>0.3717</td>
<td>0.1945</td>
<td>0.101</td>
</tr>
</tbody>
</table>

* Correspondence author (e-mail: xiongjing@wzu.edu.cn)
Acknowledgments. We acknowledge financial support by Zhejiang Provincial Technology Innovation Project Foundation (No. 2011R424023, No. 2012R424057), Zhejiang Provincial Top Key Discipline of New Materials and Process Engineering (No. 20110949) and Wenzhou Technology Project Foundation (No. Y20100003).

References