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Summary. We have prepared four H/D isotope forms
of Nd(DMF),(H;0);Fe(CN)s¢H,O0 (DMF = N, N-dimethyl-
formamide) by wusing D,O or DMF-d1. Temperature
dependence of magnetization exhibits H/D isotope effects
resulting from intermolecular hydrogen bonds. Temperature
dependence of Fe2p;, and 2p,,; XAS and ¥Fe Mossbauer
spectra suggested that the influence of coordination environ-
ment could be distiguished from the influence of crystal lattice
based on preliminary crystallographic results.

1. Introduction

During searching for photo-controllable molecule-based
magnets, we discovered Nd(DMF),(H,0);Fe(CN)s-H,0O
(Fig. 1) as the first desirable material among 3d-4 f cyano-
bridged complexes [1]. Although its magnetic properties [2]
and photo-induced excited structure [3] have been investi-
gated, the reason why only it exhibits such a property has not
been elucidated so far. We have systematically studied on
structure-function correlation of the related compounds and
application for hybrid functional materials widely [4-12].
Herein we prepared four forms of the H/D isotopic iso-
mers of Nd(DMF),(H,0);Fe(CN)-H,O (HH denotes a com-
plex with H,O and DMF; DH denotes D,0 and DMF; HD
H,O or (CH;),NCDO (DMF-dl); DD denotes D,O and
DMF-d1). In this communication, we examined field and
temperature dependence of magnetization to discuss the in-
fluence of the intermolecular hydrogen bonds (which will
not be strong superexchange interaction thourgh cyanide
bridges), and temperature dependence of Fe 2p;/, and 2p;,,
soft X-ray absorption spectra (XAS) to discuss inner shell
electronic states of Fe ions. We also examined the tem-
perature dependence of 5’Fe Mdssbauer spectra to discuss
closely in view of (i) H/D isotope effects and (ii) separa-
tion thermal vibration of Fe atoms and lattice strain. Ac-
cording to preliminary crystal structure determination (un-
published results), Nd(DMF),(H,0);Fe(CN)s-H,O indicates
anisotropic negative thermal expansion along the a-axis in
the range of 100-150 K, which reflects specific changes of
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Fig. 1. Crystal structure of HH of Nd(DMF),(H,0)s;Fe(CN)sH,O.

coordination bonds around Fe and Nd atoms. On the other
hand, specific intermolecular hydrogen bond distances are
not identical among HH, DH, HD, and DD forms at con-
stant temperature. Mossbauer spectra indicated that low-spin
Fe(l1) states were kept for all the conditions.

2. Experimental section

Four H/D isotope complexes (abbreviated as HH, DH, HD,
and DD) were prepared by using the corresponding D,O and
DMF-d1 solvents according to the literature [1]. > Fe isotope
was not enriched for all the samples served for Mdssbauer
spectroscopy.

The magnetic properties were measured with a Quantum
Design MPMS-XL superconducting quantum interference
device (SQUID) magnetometer at 0-50000 G at 5 K and at
5-300 K at 5000 G.

The Fe2p,,, and 2p,,, XAS were measured at KEK PF
BL-19B under variable temperature. The spectra were cor-
rected by the standard Au sample.

Mdssbauer spectra of the samples at room temperature
were measured in a transmission geometry using a > Co/Rh
source and a Wiessel MDU1200 transducer. Variable tem-
perature Mdssbauer spectra were recorded by a conventional
constant-acceleration spectrometer with a ¥Co/Cr source
and cryostat. The Doppler velocity was calibrated by using
a-Fe foil.
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3. Resultsand discussion

Fig. 2 shows the field dependence of magnetization at 5K
(above) and temperature dependence of magnetization at
5000G for HH, DH, HD, and DD. As reported previ-
ously [2], Nd(DMF),(H,0)s;Fe(CN)¢H,O exhibited antifer-
romagnetic interaction through cyanide-bridged superex-
change interactions, which was confirmed comparison with
Nd(DMF)4(H,0);Fe(CN)s:H,O and La(DMF),(H,0);Co-
(CN)g-H,O. In addition, the role of intermolecular hydrogen
bonds has been also stated in the previous study [2]. Al-
though the field dependence of magnetization plot reflecting
magnetic ordering exhibits slight difference among the four
H/D isomer, the temperature dependence of magnetization
plot reflecting magnetic interaction exhibits distinct differ-
ence as temperature increasing. The introduction of D in
the hydrogen bond network, which is in harmony with site
geometries from a preliminary crystallographic study.

Fig. 3 exhibits Fe2p;, and 2p,,, XAS at various tem-
perature for HH. This spectral information is ascribed to
temperature dependence of local coordination environment
around Fe ions as well as electronic states. As shown in
Fig. 4, low-spin Fe(ll) state is also conserved for DH, as is
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Fig. 2. Field dependence of magnetization at 5 K (above) and tempera-
ture dependence of magnetization at 5000 G the for HH, DH, HD, and
DD (below).
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Fig. 3. Variable temperature soft X-ray absorption spectra of Fe2p;,

and Fe2p,, for HH.
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Fig. 4. Variable temperature soft X-ray absorption spectra of Fe2p;,
and Fe2p,, for DH.

HH, and little H/D isotope effect can be observed by means
of XAS.

Fig. 5 shows Mdssbauer spectra of HH and HD at room
temperature, at which conditions, the temperature depen-
dence of magnetization plot exhibits distinct differences. In
contrast to magnetization measurements, H/D isotope effect
on intermolecular hydrogen bonds of DMF moiety is too
slight to detect local changes of coordination by means of
Mdssbauer spectroscopy.

Fig. 6 summarizes Mdossbauer parameters [qudrupole
splitting (Q.S.), isomer shift relative to «-iron foil at room
temperature (1.S.), and experimental line width (H.W.)]
for HH and DH at 300, 173, 100, and 12 K. Although
slight difference between HH and DH appears, low-spin
Fe(lll) state is conserved for all the data points. Accord-
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Fig. 6. Temperature dependence of IS (above), QS (middle) and HW
(below) parameters of ¥ Fe Mossbauer spectra for HH and DH.

ing to crystallographic results, (anisotropic) displacement
parameters of Fe atoms associated with thermal vibration
become small on cooling monotonously, while lattice pa-

rameters exhibit anisotropic negative thermal distortion in
the range of 100-150 K. In this way, unusual structural be-
havior emerges from thermally-accessible lattice changes
for both DD and DH. Furthermore, the mechanism of nega-
tive thermal expansion for Nd(DMF),(H,0);Fe(CN)-H,0 is
not well-known losing crystalline water molecules nor phase
transition, which results in drastic changes of Mdssbhauer
spectra.

Comparison with other systems of local distortion of co-
ordination environment and global strain of crystal lattice
may help to understand characteristics of the present results.
For example, Jahn-Teller distortion of Cu(ll) ions is well-
known factors for local distortion by flexible coordination
environment. Besides Cu B and heme a; active sites in cy-
tochrome ¢ oxidase [13], Cu-Fe bimetallic systems are of
frequent occurrence in inorganic chemistry. Combination of
Jahn-Teller effect of Cu sites and valence or spin states of
Fe sites can induce various structural and electronic fea-
tures. Recently, Long et al. [14] reported thermally-induced
isostructural phase transition of LaCus;Fe,O,, perovskite
above room temperature. Redhammer et al. [15] discussed
temperature-dependent crystal structure refinement and *"Fe
Massbauer spectroscopy of Cu,Fe,Ge,04; garmanate. These
two oxides exhibit phase transition and negative thermal ex-
pansion, anisotropically specific axis length decreasing on
heating by several mechanism for each system [16]. Nega-
tive thermal expansion exhibits opposite structural response
against common systems by changing temperature, because
it may be useful examples to examine temperature depen-
dent correlation between crystal structures and electronic
properties [17].

Deconvolution of Mdsshauer spectra provides quadrupole
splitting parameters [18], isomer shift parameters, and half
width values. Contrary to theoretical calculations of Mdss-
bauer parameters [19-21], the influence of crystal lattice
is not negligible for actual systems. Some reasons show-
ing drastic changes of Mdssbauer spectra accompanying
changes of crystal lattice have been reported experimentally
such as thermal decomposition losing crystalline water [22],
dimorphism [23] and low-temperature crystal structure,
light-induced magnetic excited state [24], and phase transi-
tion of Fe(ll) ions in a quasicubic environment [25].

Classically, lattice dynamics studies on influence of
(intermolecular) bridges and temperature dependence of
asymmetric °Sn Mdsshauer spectra have been developed
for halogeno-bridged coordination polymers [26—28]. The
main and important idea of this treatment is that scattering
of y-ray depends on thermal displacement (U2) of Sn atoms,
which is combined with lattice strain directly.

Thus, temperature, crystal lattice, and thermal displace-
ment of atoms decide Mdssbauer parameters in this system.

4. Concluding remarks

We have investigated H/D isotope effects of Nd(DMF),-
(H,0);Fe(CN)g-H,0 and their thermal-responses. Although
the xmT vs. T plot exhibits H/D isotope effect against inter-
molecular hydrogen bonds, this influence cannot change
low-spin Fe(lll) electronic state. Conservation of low-spin
Fe(lIl) electronic state is also supported Fe2p;, and 2p;,
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XAS about local information of Fe atoms. Crystallographic
study is in progress now.
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