Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 9, 2016

Ca-Al-silicate inclusions in natural moissanite (SiC)

  • Simonpietro Di Pierro EMAIL logo and Edwin Gnos
From the journal American Mineralogist

Abstract

Hundred-micrometer-sized calcium-aluminum-silicates (CAS) inclusions occur in moissanite-4H, moissanite-15R, and moissanite-6H from Turkey. These inclusions commonly consist of tabular exsolution lamellae of two different minerals. By combined electron microprobe and Raman spectroscopy analysis, at least eight different, essentially Mg- and Fe-free Ca-Al-silicate or Al-silicate phases have been discerned. The most common phase is dmisteinbergite, a hexagonal modification of CaAl2Si2O8, occurring in association with lamellae of Cax(Al,Si)1−xO3 or Ca1−x(Al,Si)2+xO5 compositions. All three phases contain significant amounts of BaO (up to 2 mol% of celsiane component in dmisteinbergite), SrO, SO3, and light rare earth elements (LREE). In particular, Ca1−x(Al,Si)2+xO5 contains up to 2.1 wt% of LREE, 3.9 wt% of F, and significant traces of Cl, while it is also associated to osbornite (TiN). Pure ghelenite, Ca2Al2SiO7, and three additional compositions, namely CaAl4–xSixO7, Ca1–x(Al,Si)3+xO6, and Ca3–x(Al,Si)6+xO14 have been found, either occurring as single grains or forming exsolution lamellae. They also contain significant amounts of BaO, SrO, SO3, and LREE. One last intriguing phase is composed in average of 65.9 wt% SiO2, 17.4% Al2O3, 3.0% alkalis, 6.0% BaO, 2.0% CaO+MgO, 0.9% ZrO2, and up to 0.5% LREE. Dmisteinbergite and ghelenite show Raman peaks in very good agreement with literature data, Cax(Al,Si)1–xO3 shows main Raman modes at 416 and 1009 cm−1, Ca1–x(Al,Si)3+xO6 at 531 and 1579 cm−1 while Ca3–x(Al,Si)6+xO14 has a strong peak at 553 cm−1. CaAl4–xSixO7 shows a weak Raman pattern, while Ca1–x(Al,Si)2+xO5 has no detectable Raman modes. Since the association moissanite-CAS is thermodynamically not stable at ambient pressure and moissanite crystals hosting the CAS phases have δ13C values typical of deep-mantle origin, we interpret the CAS inclusions as partially retrogressed HP minerals. Striking analogies exist between observed CAS compositions and experimentally obtained HP-HT mineralogy. For instance, Cax(Al,Si)1–xO3 contains up to 25 mol% of Al2O3, which is considered as the upper limit of alumina solubility in Ca-perovskite. The study confirms that CAS phases are an important mantle depository for large ion lithophile elements (LILE) and LREE.


Special collection information can be found at .


Acknowledgments

Salvatore Musacchia, the person who found the bluish pebble, is greatly acknowledged for providing the material for research. Electron-microprobe analyses at the University of Bern were supported by Schweizerischer Nationalfonds (credit 21-26579.89). Financial support from the Swiss National Science Foundation Commission of the University of Fribourg (fellowship n. PBFR2-101389) to S.D.P. when he was a post-doc fellow at ENS/Lyon is greatly acknowledged. We thank Bruno Reynard, Isabelle Daniel, and Gilles Montagnac at ENS/Lyon for discussions and Raman lab assistance, and Philippe Grandjean at University Claude Bernard Lyon-1 for WDS-microprobe assistance. Jessy Gillot at Saint-Gobain Recherche is also thanked for the SEM-EDS X-ray mapping of CAS. We also thank Ed Mathez, an anonymous reviewer, and Associate Editor Daniel Hummer for their constructive reviews.

References cited

Abe, T., Tsukamuto, K., and Sunagawa, I. (1991) Nucleation, growth and stability of CaAl2Si2O8 polymorphs. Physics and Chemistry of Minerals, 17, 473–484.10.1007/BF00202227Search in Google Scholar

Ahmed-Zaïd, I., and Madon, M. (1995) Electron microscopy of high-pressure phases synthesized from natural garnets in a diamond-anvil cell: Implications for the mineralogy of the lower mantle. Earth and Planetary Science Letters, 129, 233–247.10.1016/0012-821X(94)00245-TSearch in Google Scholar

Akaogi, M., Yano, M., Tejima, Y., Iijima, M., and Kojitani, H. (2004) High-pressure transitions of diopside and wollastonite: Phase equilibria and thermochemistry of CaMgSi2O6, CaSiO3 and CaSi2O5-CaTiSiO5 system. Physics of the Earth and Planetary Interiors, 143–144, 145–156.10.1016/j.pepi.2003.08.008Search in Google Scholar

Aldanmaz, E., Köprübaşi, N., Gürer, F., Kaymakçi, N., and Gourgaud, A. (2006) Geochemical constraints on the Cenozoic, OIB-type alkaline volcanic rocks of NW Turkey: Implications for mantle sources and melting processes. Lithos, 86, 50–76.10.1016/j.lithos.2005.04.003Search in Google Scholar

Alifirova, T.A, Pokhilenko, L.N., Ovchinnikov, Y.I., Donnelly, C.L., Riches, A.J.V., and Taylor, L.A. (2012) Petrologic origin of exsolution textures in mantle min erals: evidence in pyroxenitic xenoliths from Yakutia kimberlites. International Geology Review, 54, 1071–1092.10.1080/00206814.2011.623011Search in Google Scholar

Angel, R.J. (1997) Transformation of fivefold-coordinated silicon to octaedral silicon in calcium silicate, CaSi2O5. American Mineralogist, 82, 836–839.Search in Google Scholar

Angel, R.J., Ross, N.L., Seifert, F., and Fliervoet, T.F. (1996) Structural characterization of pentacoordinate silicon in a calcium silicate. Nature, 384, 441–444.10.1038/384441a0Search in Google Scholar

Angel, R.J., Kunz, M., Miletich, R., Woodland, A.B., Koch, M., and Knoche, R.L. (1999) Effect of isovalent Si,Ti substitution on the bulk moduli of Ca(Ti1–xSix) SiO5 titanites. American Mineralogist, 84, 282–287.10.2138/am-1999-0310Search in Google Scholar

Backhaus-Ricoult, M., Mozdzierz, N., and Eveno, P. (1993) Impurities in silicon carbide ceramics and their role during high-temperature creep. Journal de Physique III, 3, 2189–2210.10.1051/jp3:1993269Search in Google Scholar

Bai, W., Zhous, M., and Robinson, P.T. (1993) Possibly diamond-bearing mantle peridotites and podiform chromitites in the Luobusa and Donqiao ophiolites, Tibet. Canadian Journal of Earth Sciences, 30, 1650–1659.10.1139/e93-143Search in Google Scholar

Bai, W., Robinson, P.T., Fang, Q., Yang, J., Yan, B., Zhang, Z., Hu, X., Zhous, M., and Malpas, J. (2000) The PGE and base-metal alloys in the podiform chromitites of the Luobusa ophiolite, southern Tibet. Canadian Mineralogist, 38, 585–598.10.2113/gscanmin.38.3.585Search in Google Scholar

Bai, W., Yang, J., Fang, Q., Yan, B., and Shi, R. (2003) An unusual mantle mineral group in ophiolites of Tibet. Geology in China, 30, 144–150.Search in Google Scholar

Barkley, M.C., Downs, R.T., and Yang, H. (2011) Structure of walstromite, BaCa2Si3O9, and its relationship to CaSiO3-walstromite and wollastonite-II. American Mineralogist, 96, 797–801.10.2138/am.2011.3699Search in Google Scholar

Bauer, J., Fiala, J., and Hrichovà, R. (1963) Natural α-silicon carbide. American Mineralogist, 48, 620–634.Search in Google Scholar

Beck, P., Gillet, P., Gautron, L., Daniel, I., and El Goresy, A. (2004) A new natural high-pressure (Na,Ca)-hexaluminosilicate [(CaxNa1–x)Al3+xSi3–xO11] in shocked Martian meteorites. Earth and Planetary Science Letters, 219, 1–12.10.1016/S0012-821X(03)00695-2Search in Google Scholar

Bläss, U.W., Langenhorst, F., Frost, D.J., and Seifert, F. (2007) Oxygen deficient perovskites in the system CaSiO3-CaAlO2.5 and implications for the Earth's interior. Physics and Chemistry of Minerals, 34, 363–376.10.1007/s00269-007-0154-xSearch in Google Scholar

Bouhifd, M.A., Gruener, G., Mysen, B.O., and Richet, P. (2002) Premelting and calcium mobility in gehlenite (Ca2Al2SiO7) and pseudowollastonite (CaSiO3). Physics and Chemistry of Minerals, 29, 655–662.10.1007/s00269-002-0276-0Search in Google Scholar

Boyko, E.R., and Wisnyi, L.G. (1958) The optical properties and structures of CaO· 2Al2O3 and SrO· 2Al2O3. Acta Crystallographica, A11, 444–445.10.1107/S0365110X58001183Search in Google Scholar

Brearley, A.J., and Jones, R.H. (1998) Chondritic meteorites. In P.H. Ribbe, Ed., Planetary Materials, 36, 3-1–3-398. Reviews in Mineralogy, Mineralogical Society of America, Chantilly, Virginia.Search in Google Scholar

Brenker, F.E., Vincze, L., Vekemans, B., Nasdala, L., Stachel, T., Vollmer, C., Kersten, M., Somogyi, A., Adams, F., Joswig, W., and Harris, J.W. (2005) Detection of a Ca-rich lithology in the earth's deep (>300 km) convecting mantle. Earth and Planetary Science Letters, 236, 579–587.10.1016/j.epsl.2005.05.021Search in Google Scholar

Daniel, I., Gillet, P., McMillan, P.F., and Richet, P. (1995) An in situ high-temperature structural study of stable and metastable CaAl2Si2O8 polymorphs. Mineralogical Magazine, 59, 25–33.10.1180/minmag.1995.59.394.03Search in Google Scholar

Daulton, T.L., Bernatowicz, T.J., Lewis, R.S., Messenger, S., Stadermann, F.J., and Amari, S. (2002) Polytype distribution in circumstellar silicon carbide. Science, 296, 1852–1855.10.1126/science.1071136Search in Google Scholar

De, S., Heaney, P.J., Hargraves, R.B., Vincenzi, E.P., and Taylor, P.T. (1998) Microstructural observations of polycrystalline diamond: a contribution to the carbonado conundrum. Earth and Planetary Science Letters, 164, 421–433.10.1016/S0012-821X(98)00229-5Search in Google Scholar

Di Pierro, S., Gnos, E., Grobety, B.H., Armbruster, T., Bernasconi, S.M., and Ulmer, P. (2003) Rock-forming moissanite (natural α-silicon carbide). American Mineralogist, 88, 1817–1821.10.2138/am-2003-11-1223Search in Google Scholar

Dobrzhinetskaya, L., and Green, H.W. (2007) Diamond synthesis from graphite in the presence of water and SiO2: Implications for diamond formation in quartzites from Kazakhstan. International Geology Review, 49, 389–400.10.2747/0020-6814.49.5.389Search in Google Scholar

Dörsam, G., Liebscher, A., Wunder, B., Franz, G., and Gottschalk, M. (2009) Crystal structure refinement of synthetic Ca0.43Sr0.57[SiO3]-walstromite and walstromite–fluid Ca–Sr distribution at upper-mantle conditions. European Journal of Mineralogy, 21, 705–714.10.1127/0935-1221/2009/0021-1949Search in Google Scholar

Essene, E.J., and Fisher, D.C. (1986) Lightning strike fusion: extreme reduction and metal-silicate liquid immiscibility. Science, 234, 189–193.10.1126/science.234.4773.189Search in Google Scholar

Gao, C., and Liu, Y. (2008) Moissanite-bearing carbonatite xenoliths from Cenozoic basalt, North China: Products of ancient oceanic crust subduction? Geochimica et Cosmochimica Acta, 72(12), A292.Search in Google Scholar

Gasparik, T., Wolf, K., and Smith, C.M. (1994) Experimental determination of phase relations in the CaSiO3 system from 8 to 15 GPa. American Mineralogist, 79, 1219–1222.Search in Google Scholar

Gauthier, J.P. (1978) Polytypisme du carbure de silicium: intérêt de la diffraction électronique par réflexion, 161p. Ph.D thesis, Université Claude-Bernard, France.Search in Google Scholar

Gautron, L., and Madon, M. (1994) A study of the stability of anorthite in the PT conditions of Earth's transition zone. Earth and Planetary Science Letters, 125, 281–291.10.1016/0012-821X(94)90221-6Search in Google Scholar

Gautron, L., Angel, R.J., and Miletich, R. (1999) Structural characterization of the high-pressure phase CaAl4Si2O11. Physics and Chemistry of Minerals, 27, 47–51.10.1007/s002690050239Search in Google Scholar

Golovko,A.V., and Kaminsky, F. (2010) The Shoshonite-Absarokite-Picrite Karashoho Pipe, Uzbekistan: An unusual diamond deposit in an atypical tectonic environment. Economic Geology, 105, 825–840.10.2113/gsecongeo.105.4.825Search in Google Scholar

Grady, M.M., Verchovsky, A.B., and Wright, I.P. (2004) Magmatic carbon in Martian meteorites: attempts to constrain the carbon cycle on Mars. International Journal of Astrobiology, 3, 117–124.10.1017/S1473550404002071Search in Google Scholar

Gray, I.E., Madsen, I.C., Hibberson, W.O., and O’Neill, H.St.C. (2000) CaAl12Si4O27, a new high-pressure phase containing Al6O19 clusters. Journal of Solid State Chemistry, 153, 391–397.10.1006/jssc.2000.8788Search in Google Scholar

Gréaux, S., Gautron, L., Andrault, D., Bolfan-Casanova, N., Guignot, N., and Bouhifd, M.A. (2009) Experimental high pressure and high temperature study of the incorporation of uranium in Al-rich CaSiO3 perovskite. Physics of the Earth and Planetary Interiors, 174, 254–263.10.1016/j.pepi.2008.06.010Search in Google Scholar

Gréaux, S., Nishiyama, N., Kono, Y., Gautron, L., Ohfuji, H., Kunimoto, T., Menguy, N., and Irifune, T. (2011a) Phase transformations of Ca3Al2Si3O12 grossular garnet to the depths of the Earth's mantle transition zone. Physics of the Earth and Planetary Interiors, 185, 89–99.10.1016/j.pepi.2011.02.001Search in Google Scholar

Gréaux, S., Nishiyama, N., Kono, Y., Irifune, T., and Gautron, L. (2011b) P-V-T equation of state of CaAl4Si2O11 CAS phase. Physics and Chemistry of Minerals, 38, 581–590.10.1007/s00269-011-0430-7Search in Google Scholar

Gréaux, S., Farges, F., Gautron, L., Trcera, N., Flank, A.M., and Lagarde, P. (2012) X-ray absorption near edge structure (XANES) study of the speciation of uranium and thorium in Al-rich CaSiO3 perovskite. American Mineralogist, 96, 100–109.10.2138/am.2012.3811Search in Google Scholar

Hazen, R.M., Papineau, D., Bleeker, W., Downs, R.T., Ferry, J., McCoy, T., Sverjensky, D., and Yang, H. (2008) Mineral evolution. American Mineralogist, 93, 1693–1720.10.2138/am.2008.2955Search in Google Scholar

Hazen, R.M., Downs, R.T., Jones, A.P., and Kah, L. (2013) Carbon mineralogy and crystal chemistry. Reviews in Mineralogy and Geochemistry, 75, 7–46.10.1515/9781501508318-004Search in Google Scholar

Hin, R.C., Fitoussi, C., Schmidt, M.W., and Bourdon, B. (2014) Experimental determination of the Si isotope fractionation factor between liquid metal and liquid silicate. Earth and Planetary Science Letters, 387, 55–66.10.1016/j.epsl.2013.11.016Search in Google Scholar

Hirose, K., Fei, Y., Ma, Y., and Mao, H.K. (1999) The fate of subducted basaltic crust in the Earth's lower mantle. Nature, 397, 53–56.10.1038/16225Search in Google Scholar

Hofmeister, A.M., Wopenka, B., and Locock, A.J. (2004) Spectroscopy and structure of hibonite, grossite and CaAl2O4: Implications for astronomical environments. Geochimica et Cosmochimica Acta, 68, 4485–4503.10.1016/j.gca.2004.03.011Search in Google Scholar

Horita, J., and Polyakov, V.B. (2015) Carbon-bearing iron phases and the carbon isotope composition of the deep Earth. Proceedings of the National Academy of Sciences, 112, pp. 31–36.10.1073/pnas.1401782112Search in Google Scholar PubMed PubMed Central

Hough, R.M., Gilmour, I., Pillinger, C.T., Arden, J.W., Gilkes, K.W.R., Yuan, J., and Milledge, H.J. (1995) Diamond and silicon carbide in impact melt rock from the Ries impact crater. Nature, 378, 41–44.10.1038/378041a0Search in Google Scholar

Innocenti, F., Agostini, S., Di Vincenzo, G., Doglioni, C., Manetti, P., Savaşçin, M.Y., and Tonarini, S. (2005) Neogene and Quaternary volcanism in Western Anatolia: Magma sources and geodynamic evolution. Marine Geology, 221, 397–421.10.1016/j.margeo.2005.03.016Search in Google Scholar

Irifune, T., Ringwood, A.E., and Hibberson, W.O. (1994) Subduction of continental crust and terrigenous and pelagic sediments: an experimental study. Earth and Planetary Science Letters, 126, 351–368.10.1016/0012-821X(94)90117-1Search in Google Scholar

Ishibashi, K., Hirose, K., Sata, N., and Ohishi, Y. (2008) Dissociation of CAS phase in the uppermost lower mantle. Physics and Chemistry of Minerals, 35, 197–200.10.1007/s00269-007-0212-4Search in Google Scholar

Jambor, J.L., and Vanko, D.A. (1992) New mineral names. American Mineralogist, 77, 446–452Search in Google Scholar

Jaques,A.L., Hall,A.E., Sheraton, J.W., Smith, C.B., Sun, S.S., Drew, R.M., Foudoulis, C., and Ellingsen, K. (1989) Composition of crystalline inclusions and C-isotopic composition of Argyle and Ellendale diamonds. In J. Ross, Ed., Proceedings of the Fourth International Kimberlite Conference, Kimberlite and Related Rocks, Volume 2: Their Mantle/Crust Setting, Diamonds and Diamond Exploration. Geological Society of Australia Special Publication 14, p. 966–989. Blackwell Scientific, Cambridge, U.K.Search in Google Scholar

Jepps, N.W., and Page, T.F. (1983) Polytypic transformations in silicon carbide. In P. Krishna, Ed., Crystal Growth and Characterization of Polytype Structures, 7, 259–307. Pergamon Press, Oxford, U.K.10.1016/0146-3535(83)90034-5Search in Google Scholar

Joswig, W., Stachel, T., Harris, J.W., Baur, W.H., and Brey, G.P. (1999) New Ca-silicate inclusions in diamonds—tracers from the lower mantle. Earth and Planetary Science Letters, 173, 1–6.10.1016/S0012-821X(99)00210-1Search in Google Scholar

Joswig, W., Paulus, E.F., Winkler, B., and Milman, V. (2003) The crystal structure of CaSiO3-walstromite, a special isomorph of wollastonite-II. Zeitschrift für Kristallographie, 218, 811–818.10.1524/zkri.218.12.811.20547Search in Google Scholar

Kaminsky, F. (2012) Mineralogy of the lower mantle: A review of ‘super-deep’mineral inclusions in diamond. Earth-Sciences Reviews, 110, 127–147.10.1016/j.earscirev.2011.10.005Search in Google Scholar

Kanzaki, M., Stebbins, J.F., and Xue, X. (1998) Characterization of quenched high pressure phases in CaSiO3 system by XRD and 29Si NMR. Geophysical Research Letters, 18, 463–466.10.1029/91GL00463Search in Google Scholar

Kawai, K., and Tsuchiya, T. (2012) First principles investigations on the elasticity and phase stability of grossular garnet. Journal of Geophysical Research B: Solid Earth, 117, B02202.10.1029/2011JB008529Search in Google Scholar

Kimura, M., Mikouchi, T., Suzuki, A., Miyahara, M., Ohtani, E., and El Goresy, A. (2009) Kushiroite, CaAlAlSiO6: A new mineral of the pyroxene group from the ALH 85085 CH chondrite, and its genetic significance in refractory inclusions. American Mineralogist, 94, 1479–1482.10.2138/am.2009.3242Search in Google Scholar

Klein-BenDavid, O., Wirth, R., and Navon, O. (2007) Micrometer-scale cavities in fibrous and cloudy diamonds—A glance into diamond dissolution events. Earth and Planetary Science Letters, 264, 89–103.10.1016/j.epsl.2007.09.004Search in Google Scholar

Knippenberg, W.F. (1963) Growth phenomena in silicon carbide. Philips Research Reports, 18, 161–274Search in Google Scholar

Komabayashi, T., Hirose, K., Sata, N., Ohishi, Y., and Dubrovinsky, L.S. (2007) Phase transition in CaSiO3 perovskite. Earth and Planetary Science Letters, 260, 564–569.10.1016/j.epsl.2007.06.015Search in Google Scholar

Kojitani, H., Wakabayashi, Y., Tejima, Y., Kato, C., Haraguchi, M., and Akaogi, M. (2009) High-pressure phase relations in Ca2AlSiO5.5 and energetics of perovskiterelated compounds with oxygen defects in the Ca2Si2O6–Ca2Al2O5 join. Physics of the Earth and Planetary Interiors, 173, 349–353.10.1016/j.pepi.2009.02.001Search in Google Scholar

Krot, A., Fagan, T.J., Keil, K., McKeegan, K.D., Sahijpal, S., Hutcheon, I.D., Petaev, M.I., and Yurimoto, H. (2004) Ca,Al-rich inclusions, amoeboid olivine aggregates, and Al-rich chondrules from the unique carbonaceous chondrite Acfer 094: I. Mineralogy and petrology. Geochimica et Cosmochimica Acta, 68, 2167–2184.10.1016/j.gca.2003.10.025Search in Google Scholar

Kudoh, Y., and Kanzaki, M. (1998) Crystal chemical characteristics of α-CaSi2O5, a new high pressure calcium silicate with five-coordinated silicon synthesized at 1500 °C and 10 GPa. Physics and Chemistry of Minerals, 25, 429–433.10.1007/s002690050132Search in Google Scholar

Kurashina, T., Hirose, K., Ono, S., Sata, N., and Ohishi, Y. (2004) Phase transition in Al-bearing CaSiO3 perovskite: implications for seismic discontinuities in the lower mantle. Physics of the Earth and Planetary Interiors, 145, 67–74.10.1016/j.pepi.2004.02.005Search in Google Scholar

Leung, I.S. and Kuo, W.X. (1988) Abundant moissanite found in Fuxian diamond pipe, Liaoning, China. Geological Society of America 1988 Centennial Celebration, Denver, Colorado, Oct. 31–Nov. 3, 1988 Conference Proceeding, Abstract 20850.Search in Google Scholar

Leung, I.S. and Kuo, W.X. (1990) Silicon carbide cluster entrapped in a diamond from Fuxian, China. American Mineralogist, 75, 1110–1119Search in Google Scholar

Leung, I.S., Guo, W., Friedman, I., and Gleason, J. (1990) Natural occurrence of silicon carbide in a diamondiferous kimberlite from Fuxian. Nature, 346, 352–354.10.1038/346352a0Search in Google Scholar

Leung, I.S., Taylor, L.A., Tsao, C.S., and Han, Z. (1996) SiC in diamond and kimberlites: Implications for nucleation and growth of diamond. International Geology Review, 38, 595–606.10.1080/00206819709465348Search in Google Scholar

Liang, F., Xu, Z., and Zhao, J. (2014) In situ moissanite in dunite: Deep mantle origin of mantle peridotite in Luobusa ophiolite, Tibet. Acta Geologica Sinica (English ed.), 88, 517–529.10.1111/1755-6724.12211Search in Google Scholar

Lindstad, L.H. (2002) Recrystallization of silicon carbide. Thesis/Dissertation, Department of Materials Technology and Electrochemistry Norwegian University of Science and Technology N-7491 Trondheim.Search in Google Scholar

Liu, X., Wang, S., He, Q., Chen, J., Wang, H., Li, S., Peng, F., Zhang, L., and Fei, Y. (2012) Thermal elastic behavior of CaSiO3-walstromite: A powder X-ray diffraction study up to 900 °C. American Mineralogist, 97, 262–267.10.2138/am.2012.3918Search in Google Scholar

Ma, C., Simon, S.B., Rossman, G.R., and Grossman, L. (2009) Calcium Tschermak's pyroxene, CaAlAlSiO6, from the Allende and Murray meteorites: EBSD and micro-Raman characterizations. American Mineralogist, 94, 1483–1486.10.2138/am.2009.3231Search in Google Scholar

Ma, C., Krot, A.N, and Bizzarro, M. (2013) Discovery of dmisteinbergite (hexagonal CaAl2Si2O8) in the Allende meteorite:Anew member of refractory silicates formed in the solar nebula. American Mineralogist, 98, 1368–1371.10.2138/am.2013.4496Search in Google Scholar

Mao, H., Hillert, M., Sellby, M., and Sundman, B. (2006) Thermodynamic assessment of the CaO-Al2O3-SiO2 system. Journal of the American Ceramic Society, 89, 298–308.10.1111/j.1551-2916.2005.00698.xSearch in Google Scholar

Marakushev, A.A., Glazovskaya, L.I., and Marakushev, S.A. (2013) Evolution of the iron-silicate and carbon material of carbonaceous chondrites. Moscow University Geology Bulletin, 68, 265–281.10.3103/S0145875213050074Search in Google Scholar

Marshintsev, V.K. (1990) Nature of silicon carbide in kimberlites rocks of Yakutia. Mineralogiceskiy Zhurnal, 12, 17–26.Search in Google Scholar

Mathez, E.A., Fogel, R.A., Hutcheon, I.D., and Marshintsev, V.K. (1995) Carbon isotopic composition and origin of SiC from kimberlites of Yakutia, Russia. Geochimica et Cosmochimica Acta, 59, 781–791.10.1016/0016-7037(95)00002-HSearch in Google Scholar

McCammon, C., Hutchinson, M., and Harris, J.W. (1997) Ferric iron content of mineral inclusions in diamonds from São Luiz: A view into the Lower Mantle. Science, 278, 434–436.10.1126/science.278.5337.434Search in Google Scholar

Milton, C., and Vitaliano, D.B. (1984) The non-existence of moissanite, SiC. 27th International Geological Congress, 5, 107–108.Search in Google Scholar

Moissan, H. (1905) Etude du siliciure de carbone de la météorite de Cañon Diablo. Comptes-rendus Académie des Sciences (Paris), 140, 405–406.Search in Google Scholar

Moore, R.O., and Gurney, J.J. (1989) Mineral inclusions in diamond from the Monastery kimberlite, South Africa. In J. Ross, Ed., Proceedings of the Fourth International Kimberlite Conference, Kimberlite and Related Rocks, Volume 2: Their Mantle/Crust Setting, Diamonds and Diamond Exploration. Geological Society of Australia Special Publication 14, p. 1029–1041. Blackwell Scientific, Cambridge, U.K.Search in Google Scholar

Moore, R.O., Otter, M.L., Rickard, R.S., Harris, J.W., and Gurney, J.J. (1986) The occurrence of moissanite and ferro-periclase as inclusions in diamond. In 4th International Kimberlite Conference, Perth, Extended Abstracts; Abstract Geological Society of Australia, 16, 409–411.Search in Google Scholar

More, K.L., Carter, C.H., Bentley, J., Wadlin, W.H., Lavanier, L., and Davis, R.F. (1986) Occurrence and distribution of Boron-containing phases in sintered α-silicon carbide. Journal of the American Ceramic Society, 69, 695–698.10.1111/j.1151-2916.1986.tb07473.xSearch in Google Scholar

Munro, R.G. (1997) Material properties of a sintered α-SiC. Journal of Physical and Chemical Reference Data, 26, 1195–1203.10.1063/1.556000Search in Google Scholar

Nasdala, L., Brenker, F. E., Glinnemann, J., Hofmeister, W., Gasparik, T., Harris, J. W., Stachel, T., and Reese, I. (2003) Spectroscopic 2D-tomography: Residual pressure and strain around mineral inclusions in diamonds. European Journal of Mineralogy, 15, 931–935.10.1127/0935-1221/2003/0015-0931Search in Google Scholar

Nestola, F., Mittempergher, S., Di Toro, G., Zorzi, F., and Pedron, D. (2010) Evidence of dmisteinbergite (hexagonal form of CaAl2Si2O8) in pseudotachylyte:Atool to constrain the thermal history of a seismic event. American Mineralogist, 95, 405–409.10.2138/am.2010.3393Search in Google Scholar

Nishi, M., Kubo, T., Kato, T., Tominaga, A., Funakoshi, K.I., and Higo, Y. (2011) Exsolution kinetics of majoritic garnet from clinopyroxene in subducting oceanic crust. Physics of the Earth and Planetary Interiors, 189, 47–55.10.1016/j.pepi.2011.07.002Search in Google Scholar

Nomura, K., and Miyamoto, M. (1998) Hydrothermal experiments on alteration of Ca-Al-rich inclusions (CAIs) in carbonaceous chondrites: Implication for aqueous alteration in parent asteroids. Geochimica et Cosmochimica Acta, 62, 3575–3588.10.1016/S0016-7037(98)00245-2Search in Google Scholar

Okamura, F.P., Ghose, S., and Ohashi, H. (1974) Structure and crystal chemistry of Calcium Tschermak's pyroxene, CaAlAlSiO6.American Mineralogist 59, 549–557.Search in Google Scholar

Oleynikov, B.V., Pankov, V.Y., Plaksenko, A.N., and Okrugin, A.V. (1987) Inclusions in moissanite from mafic rocks of cratons. Transactions (Doklady) of the U.S.S.R. Academy of Sciences: Earth Science Sections, 283, 155–159.Search in Google Scholar

Osborn, E.F., and Muan, A. (1960) Phase equilibrium diagrams of oxide systems. Plate 2. The system CaO-Al2O3-SiO2. American Ceramic Society, Columbus, Ohio.Search in Google Scholar

Otter, M.L., and Gurney, J.J. (1986) Mineral inclusions in diamonds from the sloan diatremes. Colorado-Wyoming State Line Kimberlite District, North America In 4th International Kimberlite Conference, Perth, Extended Abstracts; Abstract Geological Society of Australia, 16, 415–417.Search in Google Scholar

Otter, M.L., and Gurney, J.J. (1989) Mineral inclusions in diamonds from the Sloan diatremes, Colorado-Wyoming State Line kimberlite district, North America. In J. Ross, Ed., Proceedings of the Fourth International Kimberlite Conference, Kimberlite and Related Rocks, Volume 2: Their Mantle/Crust Setting, Diamonds and Diamond Exploration. Geological Society of Australia Special Publication 14, p. 1042–1053. Blackwell Scientific, Cambridge, U.K.Search in Google Scholar

Pankov, V.Y., and Spetsius, Z.V. (1990) Iron silicide and native silicon inclusions in moissanite from the Sytykan kimberlite pipe. Transactions (Doklady) of the U.S.S.R. Academy of Sciences Earth Science Sections, 305, 152–155.Search in Google Scholar

Perraki, M., and Faryad, S.W. (2014) First finding of microdiamond, coesite and other UHP phases in felsic granulites in the Moldanubian Zone: Implications for deep subduction and a revised geodynamic model for Variscan Orogeny in the Bohemian Massif. Lithos, 202–203, 157–166.10.1016/j.lithos.2014.05.025Search in Google Scholar

Qi, X.X., Yang, J.S., Xu, Z.Q., Bai, W.J., Zhang, Z.M., and Fang, Q.S. (2007) Discovery of moissanite in retrogressive eclogite from the Pre-pilot Hole of the Chinese Continental Scientific Drilling Project (CCSD-PP2) and its geological implication. Acta Petrologica Sinica, 23, 3207–3214.Search in Google Scholar

Robinson, P.T., Bai, W.J., Malpas, J., Yang, J.S., Zhou, M.F., Fang, Q.S., Hu, X.F., Cameron, S., and Staudigel, H. (2004) Ultra-high pressure minerals in the Loubusa Ophiolite, Tibet, and their tectonic implications. Geological Society of London, Special Publications, 226, 247–271.10.1144/GSL.SP.2004.226.01.14Search in Google Scholar

Robinson, P.T., Trumbull, R.B., Schmitt, A., Yang, J.S., Li, J.W., Zhou, M.F., Erzinger, J., Dare, S., and Xiong, F. (2015) The origin and significance of crustal minerals in ophiolitic chromitites and peridotites. Gondwana Research, 27, 486–506.10.1016/j.gr.2014.06.003Search in Google Scholar

Sameshima, T., and Rodgers, K.A. (1990) Crystallography of 6H silicon carbide from Seddonville, New Zealand. Neues Jahrbuch für Mineralogie Monatshefte, 3, 137–143.Search in Google Scholar

Schmidt, M.W., Gao, C., Golubkova, A., Rohrbach, A., and Connolly, J.A.D. (2014) Natural moissanite (SiC)—a low temperature mineral formed from highly fraction ated ultra-reducing COH-fluids. Progress in Earth and Planetary Science, 1, 1–14.10.1186/s40645-014-0027-0Search in Google Scholar

Schoenitz, M., Navrotsky, A., and Ross, N. (2001) Enthalpy of formation of CaSi2O5 a quenched high-pressure phase with pentacoordinate silicon. Physics and Chemistry of Minerals, 28, 57–60.10.1007/s002690000131Search in Google Scholar

Seryotkin, Y.V., Sokol, E.V., and Kokh, S.N. (2012) Natural pseudowollastonite: Crystal structure, associated minerals, and geological context. Lithos, 134–135, 75–90.10.1016/j.lithos.2011.12.010Search in Google Scholar

Sharma, S.K., Simons, B., and Yoder, H.S. (1983) Raman study of anorthite, calcium Tschermak's pyroxene and gehlenite in crystalline and glassy states. American Mineralogist, 68, 1113–1125.Search in Google Scholar

Shim, S., Duffy, T.S., and Shen, G. (2000) The stability and P-V-T equation of state of CaSiO3 perovskite in the Earth's lower mantle. Journal of Geophysical Research, 105, 25955–25968.10.1029/2000JB900183Search in Google Scholar

Shiryaev, A.A., and Gaillard, F. (2014) Local redox buffering by carbon at low pressures and the formation of moissanite—natural SiC. European Journal of Mineralogy, 26, 53–59.10.1127/0935-1221/2013/0025-2339Search in Google Scholar

Shiryaev, A.A., Griffin, W.L., and Stoyanov, E. (2011) Moissanite (SiC) from kimberlites: Polytypes, trace elements, inclusions and speculations on origin. Lithos, 122, 152–164.10.1016/j.lithos.2010.12.011Search in Google Scholar

Shirey, S.B., Cartigny, P., Frost, D.J., Keshav, S., Nestola, F., Nimis, P., Pearson, D.G., Sobolev, N.V., and Walter, M.J. (2013) Diamonds and the Geology of Mantle Carbon. Reviews in Mineralogy and Geochemistry, 75, 355–421.10.2138/rmg.2013.75.12Search in Google Scholar

Simon, S.B., and Grossman, L. (2011) Refractory inclusions in the unique carbonaceous chondrite Acfer 094. Meteoritics and Planetary Science, 46, 1197–1216.10.1111/j.1945-5100.2011.01224.xSearch in Google Scholar

Sokol, E., Volkova, N., and Lepezin, G. (1998) Mineralogy of pyrometamorphic rocks associated with naturally burned coal-bearing spoil-heaps of the Chelyabinsk coal basin, Russia. European Journal of Mineralogy, 10, 1003–1014.10.1127/ejm/10/5/1003Search in Google Scholar

Stachel, T. (2001) Diamonds from the astenosphere and the transition zone. European Journal of Mineralogy, 13, 883–89210.1127/0935-1221/2001/0013/0883Search in Google Scholar

Stebbins, J.F., and Poe, B.T. (1999) Pentacoordinate silicon in high-pressure crystalline and glassy phases of calcium disilicate (CaSi2O5). Geophysical Research Letters, 26, 2521–2523.10.1029/1999GL008364Search in Google Scholar

Sueda, Y., Irifune, T., Yamada, A., Inoue, T., Liu, X., and Funakoshi, K.I. (2006) The phase boundary between CaSiO3 perovskite and Ca2SiO4 + CaSi2O5 determined by in situ X-ray observations. Geophysical Research Letters, 33, L10307.Search in Google Scholar

Surkov, N.V., and Doroshev, A.M. (1998) Phase diagram of CaO-Al2O3-SiO2 system at pressures of up to 40 kbar. Russian Geology and Geophysics, 39, 1257–1272.Search in Google Scholar

Svisero, D.P. (1995) Distribution and origin of diamonds in Brazil: an overview. Journal of Geodynamics, 20, 493–514.10.1016/0264-3707(95)00017-4Search in Google Scholar

Swamy, V., and Dubrovinsky, L.S. (1997) Thermodynamic data for the phases in the CaSiO3 system. Geochimica et Cosmochimica Acta, 61, 1181–1191.10.1016/S0016-7037(96)00403-6Search in Google Scholar

Takafuji, N., Yagi, T., Miyajima, N., and Sumita, T. (2002) Study on Al2O3 content and phase stability of aluminous-CaSiO3 perovskite at high pressure and temperature. Physics and Chemistry of Minerals, 29, 532–537.10.1007/s00269-002-0271-5Search in Google Scholar

Takahashi, S., Ohtani, E., Terasaki, H., Ito, Y., Shibazaki, Y., Ishii, M., Funakoshi, K., and Higo, Y. (2013) Phase relations in the carbon-saturated C-Mg-Fe-Si-O system and C and Si solubility in liquid Fe at high pressure and temperature: implications for planetary interiors. Physics and Chemistry of Minerals, 40, 647–657.10.1007/s00269-013-0600-xSearch in Google Scholar

Trumbull, R.B., Yang, J.S., Robinson, P.T., Di Pierro, S., Vennemann, T., and Wiedenbeck, M. (2009) The carbon isotope composition of natural SiC (moissanite) from the Earth's mantle: New discoveries from ophiolites. Lithos, 113, 612–620.10.1016/j.lithos.2009.06.033Search in Google Scholar

Ulmer, G.C., Grandstaff, D.E., Woermann, E., Göbbles, M., Schönitz, M., and Woodland, A.B. (1998) The redox stability of moissanite (SiC) compared with metalmetal oxide buffers at 1773 K and at pressures up to 90 kbar. Neues Jahrbuch für Mineralogie Abhandlungen, 172, 279–307.10.1127/njma/172/1998/279Search in Google Scholar

Vanderah, T.A., Loezos, J.M., and Roth, R.S. (1996) Magnetic dielectric oxides: subsolidus phase relations in the BaO:Fe2O3:TiO2 system. Journal of Solid State Chemistry, 121, 38–50.10.1006/jssc.1996.0006Search in Google Scholar

Wang, Y., and Weidner, D.J. (1994) Thermoelasticity of CaSiO3 perovskite and implications for the Lower Mantle. Geophysical Research Letters, 21, 895–898.10.1029/94GL00976Search in Google Scholar

Wang, W., Gasparik, T., and Rapp, R.P. (2000) Partitioning of rare earth elements between CaSiO3 perovskite and coexisting phases: Constraints on the formation of CaSiO3 inclusions in diamonds. Earth and Planetary Science Letters, 181, 291–300.10.1016/S0012-821X(00)00208-9Search in Google Scholar

Weber, D., and Bischoff,A. (1994) Grossite (CaAl4O7)—a rare phase in terrestrial rocks and meteorites. European Journal of Mineralogy, 6, 591–594.10.1127/ejm/6/4/0591Search in Google Scholar

Wilding, M.C., Harte, B., and Harris, J.W. (1991) Evidence for a deep origin for São Luiz diamonds. Extended Abstracts 5th International Kimberlite Conference, CPRM Special Publication 2/91, 456–458.Search in Google Scholar

Xu, S., Wu, W., Xiao, W., Yang, J., Chen, J., Ji, S., and Liu, Y. (2008) Moissanite in serpentinite from the Dabie Mountains in China. Mineralogical Magazine, 72, 899–908.10.1180/minmag.2008.072.4.899Search in Google Scholar

Yamamoto, S., Komiya, T., Hirose, K., and Maruyama, S. (2009) Coesite and clinopyroxene exsolution lamellae in chromites: In situ ultrahigh-pressure evidence from podiform chromitites in the Luobusa ophiolite, southern Tibet. Lithos, 109, 314–322.10.1016/j.lithos.2008.05.003Search in Google Scholar

Yang, J.S., Xu, X.Z., Li, Y., Li, J.Y., Ba, D.Z., Rong, H., and Zhang, Z.M. (2011) Diamonds recovered from peridotite of the Purang ophiolite in the Yarlung-Zangbo suture of Tibet:Aproposal for a new type of diamond occurrence.Acta Petrologica Sinica, 27, 3171–3178.Search in Google Scholar

Yang, J.S., Robinson, P.T., and Dilek, Y. (2014) Diamonds in ophiolites. Elements, 10, 127–13010.2113/gselements.10.2.127Search in Google Scholar

Yusa, H., Yagi, T., and Shimobayashi, N. (1995) A new unquenchable high-pressure polymorph of Ca3Al 2Si3O12. Physics of the Earth and Planetary Interiors, 92, 25–31.10.1016/0031-9201(95)03057-4Search in Google Scholar

Zhang, A., and Hsu, W. (2009) Refractory inclusions and aluminum-rich chondrules in Sayh al Uhaymir 290 CH chondrite: Petrography and mineralogy. Meteoritics and Planetary Science, 44, 787–804.10.1111/j.1945-5100.2009.tb00769.xSearch in Google Scholar

Zhai, S., and Ito, E. (2008) Phase relations of CaAl4Si2O11 at high-pressure and hightemperature with implications for subducted continental crust into the deep mantle. Physics of the Earth and Planetary Interiors, 167, 161–167.10.1016/j.pepi.2008.03.004Search in Google Scholar

Zhou, L.Y., and Telle, R. (2010) Purifying mechanism in the acheson process—A thermodynamic study. Materials Science Forum, 645–648, 41–44.10.4028/www.scientific.net/MSF.645-648.41Search in Google Scholar

  1. Manuscript handled by Daniel Hummer.

Received: 2015-3-22
Accepted: 2015-7-10
Published Online: 2016-1-9
Published in Print: 2016-1-1

© 2016 by Walter de Gruyter Berlin/Boston

Downloaded on 27.2.2024 from https://www.degruyter.com/document/doi/10.2138/am-2016-5357/html
Scroll to top button