Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 6, 2017

Deep mantle origin and ultra-reducing conditions in podiform chromitite: Diamond, moissanite, and other unusual minerals in podiform chromitites from the Pozanti-Karsanti ophiolite, southern Turkey

  • Dongyang Lian , Jingsui Yang EMAIL logo , Yildirim Dilek , Weiwei Wu , Zhongming Zhang , Fahui Xiong , Fei Liu and Wengda Zhou
From the journal American Mineralogist

Abstract

The Pozanti-Karsanti ophiolite situated in the eastern Tauride belt, southern Turkey, is a well-preserved oceanic lithosphere remnant comprising, in ascending order, mantle peridotite, ultramafic and mafic cumulates, isotropic gabbros, sheeted dikes, and basaltic pillow lavas. Two types of chromitites are observed in the Pozanti-Karsanti ophiolite. One type of chromitites occurs in the cumulate dunites around the Moho, and the other type of chromitites is hosted by the mantle harzburgites below the Moho. The second type of chromitites has massive, nodular, and disseminated textures. We have conducted the mineral separation work on the podiform chromitites hosted by harzburgites. So far, more than 100 grains of microdiamond and moissanite (SiC) have been recovered from the podiform chromitite. The diamonds and moissanite are accompanied by large amounts of rutile. Besides zircon, monazite and sulfide are also very common phases within the separated minerals. The discovery of diamond, moissanite, and the other unusual minerals from podiform chromitite of the Pozanti-Karsanti ophiolite provides new evidences for the common occurrences of these unusual minerals in ophiolitic peridotites and chromitites. This discovery also suggests that deep mantle processes and materials have been involved in the formation of podiform chromitite.

Acknowledgments

We thank the Turkish geologists for assistance in the fieldwork, and the China National Research Center for the geochemical analyses. We appreciate Bin Shi from Chinese Academy of Geological Sciences for the SEM imaging and EDS analyses of these minerals. We also thank Paul T. Robinson, Julian A. Pearce, Changqian Ma, Cong Zhang, and Pengfei Zhang for their valuable suggestions in modifying this manuscript. Two reviewers, Sujoy Ghosh and Vincenzo Stagno, are greatly appreciated for their critical and constructive comments and suggestions that greatly improved the manuscript. We also thank Associate Editor Mainak Mookherjee and Editor Keith Putirka for their scientific contributions and handling of our paper. This research was funded by grants from the Ministry of Science and Technology of China (2014DFR21270), China Geological Survey (121201102000150069, 12120115027201, and 201511022), the International Geoscience Programme (IGCP-649), and the Fund from the State Key Laboratory of Continental Tectonics and Dynamics (Z1301-a20) and (Z1301-a22).

References cited

Akbulut, M., González-Jiménez, J.M., Griffin, W.L., Belousova, E., O’Reilly, S.Y., McGowan, N., and Pearson, N.J. (2016) Tracing ancient events in the lithospheric mantle: A case study from ophiolitic chromitites of SW Turkey. Journal of Asian Earth Sciences, 119, 1–19.10.1016/j.jseaes.2016.01.008Search in Google Scholar

Akmaz, R.M., Uysal, I., and Saka, S. (2014) Compositional variations of chromite and solid inclusions in ophiolitic chromitites from the southeastern Turkey: Implications for chromitite genesis. Ore Geology Reviews, 58, 208–224.10.1016/j.oregeorev.2013.11.007Search in Google Scholar

Alexander, C.O. (1993) Presolar SiC in chondrites: How variable and how many sources? Geochimica et Cosmochimica Acta, 57(12), 2869–2888.10.1016/0016-7037(93)90395-DSearch in Google Scholar

Arai, S. (1994) Characterization of spinel peridotites by olivine-spinel compositional relationships: review and interpretation. Chemical Geology, 113(3), 191–204.10.1016/0009-2541(94)90066-3Search in Google Scholar

Arai, S. (1997) Origin of podiform chromitites. Journal of Asian Earth Sciences, 15(2), 303–310.10.1016/S0743-9547(97)00015-9Search in Google Scholar

Arai, S., and Matsukage, K. (1998) Petrology of a chromitite micropod from Hess Deep, equatorial Pacific: a comparison between abyssal and alpine-type podiform chromitites. Lithos, 43(1), 1–14.10.1016/S0024-4937(98)00003-6Search in Google Scholar

Arai, S., Uesugi, J., and Ahmed, A.H. (2004) Upper crustal podiform chromitite from the northern Oman ophiolite as the stratigraphically shallowest chromitite in ophiolite and its implication for Cr concentration. Contributions to Mineralogy and Petrology, 147(2), 145–154.10.1007/s00410-004-0552-8Search in Google Scholar

Bonatti, E., Peyve, A., Kepezhinskas, P., Kurentsova, N., Seyler, M., Skolotnev, S. and Udintsev, G. (1992) Upper mantle heterogeneity below the Mid-Atlantic Ridge, 0–15 N. Journal of Geophysical Research: Solid Earth, 97(B4), 4461–4476.10.1029/91JB02838Search in Google Scholar

Bostock, M.G., Hyndman, R.D., Rondenay, S., and Peacock, S.M. (2002) An inverted continental Moho and serpentinization of the forearc mantle. Nature, 417, 536–538.10.1038/417536aSearch in Google Scholar PubMed

Brunelli, D., Seyler, M., Cipriani, A., Ottolini, L., and Bonatti, E. (2006) Discontinuous melt extraction and weak refertilization of mantle peridotites at the Vema lithospheric section (Mid-Atlantic Ridge). Journal of Petrology, 47(4), 745–771.10.1093/petrology/egi092Search in Google Scholar

Caran, Ş., Çoban, H., Flower, M.F., Ottley, C.J., and Yilmaz, K. (2010) Podiform chromitites and mantle peridotites of the Antalya ophiolite, Isparta Angle (SW Turkey): implications for partial melting and melt–rock interaction in oceanic and subduction-related settings. Lithos, 114(3), 307–326.10.1016/j.lithos.2009.09.006Search in Google Scholar

Cartigny, P. (2005) Stable isotopes and the origin of diamond. Elements, 1(2), 79–84.10.2113/gselements.1.2.79Search in Google Scholar

Çelik, Ö.F., Michel, D., and Gilbert, F. (2006) Precise 40Ar–39Ar ages from the metamorphic sole rocks of the Tauride Belt Ophiolites, southern Turkey: implications for the rapid cooling history. Geological Magazine, 143, 213–227.10.1017/S0016756805001524Search in Google Scholar

Dickey, J.S. (1975) A hypothesis of origin for podiform chromite deposits. Geochimica et Cosmochimica Acta, 39(6), 1061–1074.10.1016/B978-0-08-019954-2.50026-3Search in Google Scholar

Dilek, Y., and Furnes, H. (2011) Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geological Society of America Bulletin, 123(3/4), 387–411.10.1130/B30446.1Search in Google Scholar

Dilek, Y., Thy, P., Hacker, B. and Grundvig, S. (1999) Structure and petrology of Tauride ophiolites and mafic dike intrusions (Turkey): Implications for the Neotethyan ocean. Geological Society of America Bulletin, 111(8), 1192–1216.10.1130/0016-7606(1999)111<1192:SAPOTO>2.3.CO;2Search in Google Scholar

Dobrzhinetskaya, L.F., Wirth, R., Yang, J., Hutcheon, I.D., Weber, P.K., and Green, H.W. (2009) High-pressure highly reduced nitrides and oxides from chromitite of a Tibetan ophiolite. Proceedings of the National Academy of Sciences, 106(46), 19233–19238.10.1073/pnas.0905514106Search in Google Scholar

Frost, D.J. (2008) The upper mantle and transition zone. Elements, 4(3), 171–176.10.2113/GSELEMENTS.4.3.171Search in Google Scholar

Frost, D.J., and McCammon, C.A. (2008) The redox state of Earth’s mantle. Annual Review of Earth and Planetary Sciences, 36, 389–420.10.1146/annurev.earth.36.031207.124322Search in Google Scholar

Galuskin, E.V., Gfeller, F., Armbruster, T., Galuskina, I.O., Vapnik, Y., Murashko, M., and Dzierzanowski, P. (2013) New minerals and nomenclature modifications approved in 2013. Mineralogical Magazine, 77(6), 2695–2709.10.1180/minmag.2013.077.6.01Search in Google Scholar

Ghosh, S., Ohtani, E., Litasov, K.D., Suzuki, A., Dobson, D., and Funakoshi, K. (2013) Effect of water in depleted mantle on post-spinel transition and implication for 660km seismic discontinuity. Earth and Planetary Science Letters, 371, 103–111.10.1016/j.epsl.2013.04.011Search in Google Scholar

Golubkova, A., Schmidt, M.W., and Connolly, J.A.D. (2016) Ultra-reducing conditions in average mantle peridotites and in podiform chromitites: a thermodynamic model for moissanite (SiC) formation. Contributions to Mineralogy & Petrology, 171(5), 1–17.10.1007/s00410-016-1253-9Search in Google Scholar

González-Jiménez, J.M., Proenza, J.A., Gervilla, F., Melgarejo, J.C., Blanco-Moreno, J.A., Ruiz-Sánchez, R., and Griffin, W.L. (2011) High-Cr and high-Al chromitites from the Sagua de Tánamo district, Mayarí-Cristal Ophiolitic Massif (eastern Cuba): constraints on their origin from mineralogy and geochemistry of chromian spinel and platinum-group elements. Lithos, 125(1), 101–121.10.1016/j.lithos.2011.01.016Search in Google Scholar

González-Jiménez, J.M., Griffin, W.L., Proenza, J.A., Gervilla, F., O’Reilly, S.Y., Akbulut, M., Pearson, N.J., and Arai, S. (2014) Chromitites in ophiolites: How, where, when, why? Part II. The crystallization of chromitites. Lithos, 189(2014), 140–158.10.1016/j.lithos.2013.09.008Search in Google Scholar

Griffin, W.L., Afonso, J.C., Belousova, E.A., Gain, S.E., Gong, X., González-Jiménez, J.M., Howell, D., Huang, J., McGowan, N., and Pearson, N.J. (2016) Mantle recycling: Transition zone metamorphism of Tibetan ophiolitic peridotites and its tectonic implications. Journal of Petrology, 2016, 1–30.10.1093/petrology/egw011Search in Google Scholar

Hellebrand, E., Snow, J.E., Hoppe, P., and Hogmann, A.W. (2002) Garnet-field melting and late-stage refertilization in ‘residual’ abyssal peridotites from the Central Indian Ridge. Journal of Petrology, 43(12), 2305–2338.10.1093/petrology/43.12.2305Search in Google Scholar

Howell, D., Griffin, W.L., Yang, J., Gain, S., Stern, R.A., Huang, J., Jacob, D.E., Xu, X., Stokes, A.J., and O’Reilly, S.Y. (2015) Diamonds in ophiolites: Contamination or a new diamond growth environment? Earth and Planetary Science Letters, 430, 284–295.10.1016/j.epsl.2015.08.023Search in Google Scholar

Irvine, T.N. (1977) Origin of chromitite layers in the Muskox intrusion and other stratiform intrusions: a new interpretation. Geology, 5(5), 273–277.10.1130/0091-7613(1977)5<273:OOCLIT>2.0.CO;2Search in Google Scholar

Ishii, T. (1992) Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu-Ogasawara-Mariana forearc, LEG125. Proceedings of Ocean Drilling Program, Scientific Results, 125, 445–485.Search in Google Scholar

Jacob, D.E., Kronz, A., and Viljoen, K.S. (2004) Cohenite, native iron and troilite inclusions in garnets from polycrystalline diamond aggregates. Contributions to Mineralogy and Petrology, 146(5), 566–576.10.1007/s00410-003-0518-2Search in Google Scholar

Johnson, K., and Dick, H.J. (1992) Open system melting and temporal and spatial variation of peridotite and basalt at the Atlantis II fracture zone. Journal of Geophysical Research: Solid Earth, 97(B6), 9219–9241.10.1029/92JB00701Search in Google Scholar

Kaminsky, F. V., Khachatryan, G.K., Andreazza, P., Araujo, D., and Griffin, W.L. (2009) Super-deep diamonds from kimberlites in the Juina area, Mato Grosso State, Brazil. Lithos, 112, 833–842.10.1016/j.lithos.2009.03.036Search in Google Scholar

Komor, S.C., Grove, T.L., and Hébert, R. (1990) Abyssal peridotites from ODP Hole 670A (21 10″N, 45 02″W): residues of mantle melting exposed by non-constructive axial divergence. Proceedings of Ocean Drilling Program, Scientific Results, 109, 85–101.10.2973/odp.proc.sr.106109.128.1990Search in Google Scholar

Leung, I., Guo, W., Friedman, I., and Gleason, J. (1990) Natural occurrence of silicon carbide in a diamondiferous kimberlite from Fuxian. Nature, 346, 352–354.10.1038/346352a0Search in Google Scholar

Liang, F., Xu, Z., and Zhao, J. (2014) In-situ moissanite in dunite: deep mantle origin of mantle peridotite in Luobusa Ophiolite, Tibet. Acta Geologica Sinica (English edition), 88(2), 517–529.10.1111/1755-6724.12211Search in Google Scholar

Lytwyn, J.N. and Casey, J.F. (1995) The geochemistry of postkinematic mafic dike swarms and subophiolitic metabasites, Pozanti-Karsanti ophiolite, Turkey: Evidence for ridge subduction. Geological Society of America Bulletin, 107(7), 830–850.10.1130/0016-7606(1995)107<0830:TGOPMD>2.3.CO;2Search in Google Scholar

Mathez, E.A., Fogel, R.A., Hutcheon, I.D., and Marshintsev, V.K. (1995) Carbon isotopic composition and origin of SiC from kimberlites of Yakutia, Russia. Geochimica et Cosmochimica Acta, 59(4), 781–791.10.1016/0016-7037(95)00002-HSearch in Google Scholar

McGowan, N.M., Griffin, W.L., González-Jiménez, J.M., Belousova, E., Afonso, J.C., Shi, R., McCammon, C.A., Pearson, N.J. and O’Reilly, S.Y. (2015) Tibetan chromitites: Excavating the slab graveyard. Geology, 43(2), 179–182.10.1130/G36245.1Search in Google Scholar

Moix, P., Beccaletto, L., Kozur, H.W., Hochard, C., Rosselet, F., and Stampfli, G.M. (2008) A new classification of the Turkish terranes and sutures and its implication for the paleotectonic history of the region. Tectonophysics, 451(1), 7–39.10.1016/j.tecto.2007.11.044Search in Google Scholar

Niida, K. (1997) 12, Mineralogy of Mark peridotites: replacement through magma chaneling examined from Hole 920D, Mark area. Proceedings of Ocean Drilling Program, Scientific Results, 153, 265–275.Search in Google Scholar

Okamura, H., Arai, S., and Kim, Y. (2006) Petrology of forearc peridotite from the Hahajima Seamount, the Izu-Bonin arc, with special reference to chemical characteristics of chromian spinel. Mineralogical Magazine, 70(1), 15–26.10.1180/0026461067010310Search in Google Scholar

Pagé, P., and Barnes, S. (2009) Using trace elements in chromites to constrain the origin of podiform chromitites in the Thetford Mines ophiolite, Québec, Canada. Economic Geology, 104(7), 997–1018.10.2113/econgeo.104.7.997Search in Google Scholar

Parkinson, I.J., and Pearce, J.A. (1998) Peridotites from the Izu–Bonin–Mariana forearc (ODP Leg 125): evidence for mantle melting and melt–mantle interaction in a supra-subduction zone setting. Journal of Petrology, 39(9), 1577–1618.10.1093/petroj/39.9.1577Search in Google Scholar

Parlak, O., Höck, V., and Delaloye, M. (2000) Suprasubduction zone origin of the Pozanti-Karsanti ophiolite (southern Turkey) deduced from whole-rock and mineral chemistry of the gabbroic cumulates. Geological Society, London, Special Publications, 173(1), 219–234.10.1144/GSL.SP.2000.173.01.11Search in Google Scholar

Parlak, O., Höck, V., and Delaloye, M. (2002) The supra-subduction zone Pozanti–Karsanti ophiolite, southern Turkey: evidence for high-pressure crystal fractionation of ultramafic cumulates. Lithos, 65, 205–224.10.1016/S0024-4937(02)00166-4Search in Google Scholar

Pearce, J.A. (2014) Immobile element fingerprinting of ophiolites. Elements, 10(2), 101–108.10.2113/gselements.10.2.101Search in Google Scholar

Polat, A., and Casey, J.F. (1995) A structural record of the emplacement of the Pozanti-Karsanti ophiolite onto the Menderes-Taurus block in the late Cretaceous, eastern Taurides, Turkey. Journal of Structural Geology, 17(12), 1673–1688.10.1016/0191-8141(95)00061-HSearch in Google Scholar

Polat, A., Casey, J.F., and Kerrich, R. (1996) Geochemical characteristics of accreted material beneath the Pozanti-Karsanti ophiolite, Turkey: Intra-oceanic detachment, assembly and obduction. Tectonophysics, 263(1), 249–276.10.1016/S0040-1951(96)00026-1Search in Google Scholar

Putirka, K. (2016) Rates and styles of planetary cooling on Earth, Moon, Mars, and Vesta, using new models for oxygen fugacity, ferric-ferrous ratios, olivine-liquid Fe-Mg exchange, and mantle potential temperature. American Mineralogist, 101, 819–840.10.2138/am-2016-5402Search in Google Scholar

Ringwood, A.E. (1975) Composition and Petrology of the Earth’s Mantle, 618 p. McGraw-Hill, New York.Search in Google Scholar

Robinson, P.T., Bai, W., Malpas, J., Yang, J., Zhou, M., Fang, Q., Hu, X., Cameron, S., and Staudigel, H. (2004) Ultra-high pressure minerals in the Luobusa Ophiolite, Tibet, and their tectonic implications. Special Publication-Geological Society of London, 226, 247–272.10.1144/GSL.SP.2004.226.01.14Search in Google Scholar

Robinson, P.T., Trumbull, R.B., Schmitt, A., Yang, J., Li, J., Zhou, M., Erzinger, J., Dare, S., and Xiong, F. (2015) The origin and significance of crustal minerals in ophiolitic chromitites and peridotites. Gondwana Research, 27(2), 486–506.10.1016/j.gr.2014.06.003Search in Google Scholar

Rollinson, H., and Adetunji, J. (2015) The geochemistry and oxidation state of podiform chromitites from the mantle section of the Oman ophiolite: a review. Gondwana Research, 27(2), 543–554.10.1016/j.gr.2013.07.013Search in Google Scholar

Saka, S., Uysal, I., Akmaz, R.M., Kaliwoda, M., and Hochleitner, R. (2014) The effects of partial melting, melt–mantle interaction and fractionation on ophiolite generation: Constraints from the late Cretaceous Pozanti-Karsanti ophiolite, southern Turkey. Lithos, 300–316.10.1016/j.lithos.2014.05.027Search in Google Scholar

Schmidt, M.W., Gao, C., Golubkova, A., Rohrbach, A., and Connolly, J.A. (2014) Natural moissanite (SiC)–a low temperature mineral formed from highly fractionated ultra-reducing COH-fluids. Progress in Earth and Planetary Science, 1(1), 1–14.10.1186/s40645-014-0027-0Search in Google Scholar

Seyler, M., Cannat, M., and Mével, C. (2003) Evidence for major-element heterogeneity in the mantle source of abyssal peridotites from the Southwest Indian Ridge (52 to 68 E). Geochemistry, Geophysics, Geosystems, 4(2), 1–33.10.1029/2002GC000305Search in Google Scholar

Shirey, S.B., Cartigny, P., Frost, D.J., Keshav, S., Nestola, F., Nimis, P., Pearson, D.G., Sobolev, N.V., and Walter, M.J. (2013) Diamonds and the geology of mantle carbon. Reviews in Mineralogy & Geochemistry, 75, 355–421.10.2138/rmg.2013.75.12Search in Google Scholar

Shiryaev, A.A., Griffin, W.L., and Stoyanov, E. (2011) Moissanite (SiC) from kimberlites: polytypes, trace elements, inclusions and speculations on origin. Lithos, 122(3), 152–164.10.1016/j.lithos.2010.12.011Search in Google Scholar

Snow, J.E., and Dick, H.J. (1995) Pervasive magnesium loss by marine weathering of peridotite. Geochimica et Cosmochimica Acta, 59(20), 4219–4235.10.1016/0016-7037(95)00239-VSearch in Google Scholar

Stachel, T., and Luth, R.W. (2015) Diamond formation—Where, when and how? Lithos, 220, 200–220.10.1016/j.lithos.2015.01.028Search in Google Scholar

Stachel, T., Brey, G.P., and Harris, J.W. (2005) Inclusions in sublithospheric diamonds: glimpses of deep Earth. Elements, 1(2), 73–78.10.2113/gselements.1.2.73Search in Google Scholar

Stagno, V., and Frost, D.J. (2010) Carbon speciation in the asthenosphere: Experimental measurements of the redox conditions at which carbonate-bearing melts coexist with graphite or diamond in peridotite assemblages. Earth and Planetary Science Letters, 300, 72–84.10.1016/j.epsl.2010.09.038Search in Google Scholar

Stagno, V., Ojwang, D.O., McCammon, C.A., and Frost, D.J. (2013) The oxidation state of the mantle and the extraction of carbon from Earth/’s interior. Nature, 493, 84–88.10.1038/nature11679Search in Google Scholar PubMed

Stagno, V., Frost, D.J., McCammon, C.A., Mohseni, H., and Fei, Y. (2015) The oxygen fugacity at which graphite or diamond forms from carbonate-bearing melts in eclogitic rocks. Contributions to Mineralogy and Petrology, 169(2), 1–18.10.1007/s00410-015-1111-1Search in Google Scholar

Stephens, C.J. (1997) Heterogeneity of oceanic peridotite from the western canyon wall at MARK: results from site 920. Proceedings of the Ocean Drilling Program, Scientific results, 153, 285–303.10.2973/odp.proc.sr.153.016.1997Search in Google Scholar

Stern, R.J. (2004) Subduction initiation: spontaneous and induced. Earth and Planetary Science Letters, 226(3), 275–292.10.1016/S0012-821X(04)00498-4Search in Google Scholar

Stern, R.J., Reagan, M., Ishizuka, O., Ohara, Y., and Whattam, S. (2012) To understand subduction initiation, study forearc crust: To understand forearc crust, study ophiolites. Lithosphere, 4(6), 469–483.10.1130/L183.1Search in Google Scholar

Stevens, R.E. (1944) Composition of some chromites of the western hemisphere. American Mineralogist, 29, 1–34.Search in Google Scholar

Tekeli, O., Aksay, A., Urgun, B.M., and Isik, A. (1983) Geology of the Aladag mountains. The Geology of the Taurus Belt. MTA Publications, Ankara, 143–158.Search in Google Scholar

Thayer, T.P. (1964) Principal features and origin of podiform chromite deposits, and some observations on the Guelman-Soridag District, Turkey. Economic Geology, 59(8), 1497–1524.10.2113/gsecongeo.59.8.1497Search in Google Scholar

Thayer, T.P. (1970) Chromite segregations as petrogenetic indicators. Special Publication—Geological Society of South Africa, 1, 380–390.Search in Google Scholar

Thuizat, R., Whitechurch, H., Montigny, R., and Juteau, T. (1981) K-Ar dating of some infra-ophiolitic metamorphic soles from the Eastern Mediterranean: new evidence for oceanic thrustings before obduction. Earth and Planetary Science Letters, 52(2), 302–310.10.1016/0012-821X(81)90185-0Search in Google Scholar

Tian, Y., Yang, J., Robinson, P.T., Xiong, F., Yuan, L.I., Zhang, Z., Liu, Z., Liu, F., and Niu, X. (2015) Diamond discovered in high-Al chromitites of the Sartohay Ophiolite, Xinjiang Province, China. Acta Geologica Sinica, 89(2), 332–340.10.1111/1755-6724.12433Search in Google Scholar

Trumbull, R.B., Yang, J., Robinson, P.T., Di Pierro, S., Vennemann, T., and Wiedenbeck, M. (2009) The carbon isotope composition of natural SiC (moissanite) from the Earth’s mantle: New discoveries from ophiolites. Geochmica et Cosmochimica Acta, 113(3), 612–620.10.1016/j.lithos.2009.06.033Search in Google Scholar

Ucurum, A., Koptagel, O., and Lechler, P.J. (2006) Main-component geochemistry and Platinum-Group-Element potential of Turkish chromite deposits, with emphasis on the Mugla area. International Geology Review, 48(3), 241–254.10.2747/0020-6814.48.3.241Search in Google Scholar

Ueda, K., Gerya, T., and Sobolev, S.V. (2008) Subduction initiation by thermal chemical plumes: Numerical studies. Physics of the Earth & Planetary Interiors, 171(1), 296–312.10.1016/j.pepi.2008.06.032Search in Google Scholar

Ulmer, G.C., Grandstaff, D.E., Woermann, E., Göbbels, M., Schönitz, M., and Woodland, A.B. (1998) The redox stability of moissanite (SiC) compared with metal-metal oxide buffers at 1773 K and at pressures up to 90 kbar. Neues Jahrbuch für Mineralogie-Abhandlungen, 172(2), 279–307.10.1127/njma/172/1998/279Search in Google Scholar

Uysal, I., Zaccarini, F., Garuti, G., Meisel, T., Tarkian, M., Bernhardt, H.J., and Sadiklar, M.B. (2007) Ophiolitic chromitites from the Kahramanmaras area, southeastern Turkey: their platinum group elements (PGE) geochemistry, mineralogy and Os-isotope signature. Ofioliti, 32, 151–161.Search in Google Scholar

Uysal, I., Tarkian, M., Sadiklar, M.B., Zaccarini, F., Meisel, T., Garuti, G., and Heidrich, S. (2009) Petrology of Al-and Cr-rich ophiolitic chromitites from the Mugla, SW Turkey: implications from composition of chromite, solid inclusions of platinum-group mineral, silicate, and base-metal mineral, and Os-isotope geochemistry. Contributions to Mineralogy and Petrology, 158(5), 659–674.10.1007/s00410-009-0402-9Search in Google Scholar

Whattam, S.A., and Stern, R.J. (2011) The ‘subduction initiation rule’: a key for linking ophiolites, intra-oceanic forearcs, and subduction initiation. Contributions to Mineralogy and Petrology, 162(5), 1031–1045.10.1007/s00410-011-0638-zSearch in Google Scholar

Xiong, F., Yang, J., Robinson, P.T., Xu, X., Liu, Z., Li, Y., Li, J., and Chen, S. (2015) Origin of podiform chromitite, a new model based on the Luobusa ophiolite, Tibet. Gondwana Research, 27(2), 525–542.10.1016/j.gr.2014.04.008Search in Google Scholar

Xu, S., Wu, W., Xiao, W., Yang, J., Chen, J., Ji, S., and Liu, Y. (2008) Moissanite in serpentinite from the Dabie Mountains in China. Mineralogical Magazine, 72(4), 899–908.10.1180/minmag.2008.072.4.899Search in Google Scholar

Xu, X., Yang, J., Chen, S., Fang, Q., Bai, W., and Ba, D. (2009) Unusual mantle mineral group from chromitite orebody Cr-11 in Luobusa ophiolite of Yarlung-Zangbo suture zone, Tibet. Journal of Earth Science, 20, 284–302.10.1007/s12583-009-0026-zSearch in Google Scholar

Xu, X., Yang, J., Robinson, P.T., Xiong, F., Ba, D., and Guo, G. (2015) Origin of ultrahigh pressure and highly reduced minerals in podiform chromitites and associated mantle peridotites of the Luobusa ophiolite, Tibet. Gondwana Research, 27(2), 686–700.10.1016/j.gr.2014.05.010Search in Google Scholar

Yamamoto, S., Komiya, T., Hirose, K., and Maruyama, S. (2009) Coesite and clinopyroxene exsolution lamellae in chromites: In-situ ultrahigh-pressure evidence from podiform chromitites in the Luobusa ophiolite, southern Tibet. Lithos, 109(3), 314–322.10.1016/j.lithos.2008.05.003Search in Google Scholar

Yamamoto, S., Komiya, T., Yamamoto, H., Kaneko, Y., Terabayashi, M., Katayama, I., Iizuka, T., Maruyama, S., Yang, J., and Kon, Y. (2013) Recycled crustal zircons from podiform chromitites in the Luobusa ophiolite, southern Tibet. Island Arc, 22(1), 89–103.10.1111/iar.12011Search in Google Scholar

Yang, J., Dobrzhinetskaya, L., Bai, W., Fang, Q., Robinson, P.T., Zhang, J., and Green, H.W. (2007) Diamond-and coesite-bearing chromitites from the Luobusa ophiolite, Tibet. Geology, 35(10), 875–878.10.1130/G23766A.1Search in Google Scholar

Yang, J., Robinson, P.T., and Dilek, Y. (2014) Diamonds in ophiolites. Elements, 10(2), 127–130.10.2113/gselements.10.2.127Search in Google Scholar

Yang, J., Meng, F., Xu, X., Robinson, P.T., Dilek, Y., Makeyev, A.B., Wirth, R., Wiedenbeck, M., and Cliff, J. (2015) Diamonds, native elements and metal alloys from chromitites of the Ray-Iz ophiolite of the Polar Urals. Gondwana Research, 27(2), 459–485.10.1016/j.gr.2014.07.004Search in Google Scholar

Zhang, P., Uysal, I., Zhou, M., Su, B., and Avci, E. (2016) Subduction initiation for the formation of high-Cr chromitites in the Kop ophiolite, NE Turkey. Lithos, 260, 345–355.10.1016/j.lithos.2016.05.025Search in Google Scholar

Zheng, J., Griffin, W.L., O’Reilly, S.Y., Zhang, M., and Pearson, N. (2006) Zircons in mantle xenoliths record the Triassic Yangtze–North China continental collision. Earth and Planetary Science Letters, 247(1), 130–142.10.1016/j.epsl.2006.05.011Search in Google Scholar

Zhou, M., Robinson, P.T., Malpas, J., and Li, Z. (1996) Podiform chromitites in the Luobusa ophiolite (southern Tibet): Implications for melt-rock interaction and chromite segregation in the upper mantle. Journal of Petrology, 37(1), 3–21.10.1093/petrology/37.1.3Search in Google Scholar

Zhou, M.F., Sun, M., Keays, R.R., and Kerrich, R.W. (1998) Controls on platinum-group elemental distributions of podiform chromitites: a case study of high-Cr and high-Al chromitites from Chinese orogenic belts. Geochimica et Cosmochimica Acta, 62(4), 677–688.10.1016/S0016-7037(97)00382-7Search in Google Scholar

Zhou, M., Robinson, P.T., Malpas, J., Aitchison, J., Sun, M., Bai, W., Hu, X., and Yang, J. (2001) Melt/mantle interaction and melt evolution in the Sartohay high-Al chromite deposits of the Dalabute ophiolite (NW China). Journal of Asian Earth Sciences, 19(4), 517–534.10.1016/S1367-9120(00)00048-1Search in Google Scholar

Zhou, M., Robinson, P.T., Su, B., Gao, J., Li, J., Yang, J., and Malpas, J. (2014) Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits: The role of slab contamination of asthenospheric melts in suprasubduction zone environments. Gondwana Research, 26(1), 262–283.10.1016/j.gr.2013.12.011Search in Google Scholar

Zhu, H., Jingsui, Y., Robinson, P.T., Yongwang, Z., Fahui, X., Zhao, L., Zhongming, Z., and Wei, X. (2015) The Discovery of diamonds in chromitites of the Hegenshan Ophiolite, Inner Mongolia, China. Acta Geologica Sinica (English edition), 89(2), 341–350.10.1111/1755-6724.12434Search in Google Scholar

Received: 2016-5-10
Accepted: 2016-12-23
Published Online: 2017-5-6
Published in Print: 2017-5-24

© 2017 by Walter de Gruyter Berlin/Boston

Downloaded on 9.12.2023 from https://www.degruyter.com/document/doi/10.2138/am-2017-5850/html
Scroll to top button