Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 3, 2017

Effect of composition on compressibility of skiagite-Fe-majorite garnet

  • Leyla Ismailova EMAIL logo , Maxim Bykov , Elena Bykova , Andrey Bobrov , Ilya Kupenko , Valerio Cerantola , Denis Vasiukov , Natalia Dubrovinskaia , Catherine McCammon , Michael Hanfland , Konstantin Glazyrin , Hanns-Peter Liermann , Alexander Chumakov and Leonid Dubrovinsky
From the journal American Mineralogist

Abstract

Skiagite-Fe-majorite garnets were synthesized using a multianvil apparatus at 7.5–9.5 GPa and 1400–1600 K. Single-crystal X-ray diffraction at ambient conditions revealed that synthesized garnets contain 23 to 76% of an Fe-majorite component. We found that the substitution of Fe2+ and Si4+ for Fe3+ in the octahedral site decreases the unit-cell volume of garnet at ambient conditions. Analysis of single-crystal X-ray diffraction data collected on compression up to 90 GPa of garnets with different compositions reveals that with increasing majorite component the bulk modulus increases from 159(1) to 172(1) GPa. Our results and literature data unambiguously demonstrate that the total iron content and the Fe3+/Fe2+ ratio in (Mg, Fe)-majorites have a large influence on their elasticity. At pressures between 50 and 60 GPa we observed a significant deviation from a monotonic dependence of the molar volumes of skiagite-Fe-majorite garnet with pressure, and over a small pressure interval the volume dropped by about 3%. By combining results from single-crystal X-ray diffraction and high-pressure synchrotron Mössbauer source spectroscopy we demonstrate that these changes in the compressional behavior are associated with changes of the electronic state of Fe in the octahedral site.

Acknowledgments

We acknowledge the ESRF and DESY for provision of synchrotron radiation facilities. This study was partly supported by the Russian Foundation for Basic Research (project no. 16-05-00419).

References cited

Ahrens, T.J. (1995) Elastic constants of mantle minerals at high temperature. In O.L. Anderson and D.G. Isaak, Eds., Mineral Physics and Crystallography: A handbook of physical constants, p. 64–97. AGU Publications, Washington, D.C.Search in Google Scholar

Akaogi, M., and Akimoto, S. (1977) Pyroxene-garnet solid-solution equilibria in the systems Mg4Si4O12-Mg3Al2Si3O12 and Fe4Si4O12-Fe3Al2Si3O12. Physics of the Earth and Planetary Interiors, 15, 90–106.10.1016/0031-9201(77)90013-9Search in Google Scholar

Amthauer, G., Annersten, H., and Hafner, S.S. (1976) The Mössbauer spectrum of 57Fe in silicate garnets. Zeitschrift für Kristallographie, 143, 14–55.10.1524/zkri.1976.143.jg.14Search in Google Scholar

Angel, R.J., Gonzalez-Platas, J., and Alvaro, M. (2014) EosFit7c and a Fortran module (library) for equation of state calculations. Zeitschrift für Kristallographie, 229, 405–419.10.1515/zkri-2013-1711Search in Google Scholar

Badro, J., Fiquet, G., Struzhkin, V.V., Somayazulu, M., Mao, H., Shen, G., and Le Bihan, T. (2002) Nature of the high-pressure transition in Fe2O3 hematite. Physical Review Letters, 89, 205504.10.1103/PhysRevLett.89.205504Search in Google Scholar PubMed

Bengtson, A., Li, J., and Morgan, D. (2009) Mossbauer modeling to interpret the spin state of iron in (Mg, Fe)SiO3 perovskite. Geophysical Research Letters, 36, L15301.Search in Google Scholar

Bobrov, A.V., Kojitani, H., Akaogi, M., and Litvin, Y.A. (2008) Phase relations on the diopside–jadeite–hedenbergite join up to 24 GPa and stability of Nabearing majoritic garnet. Geochimica et Cosmochimica Acta, 72, 2392–2408.10.1016/j.gca.2008.03.003Search in Google Scholar

Bykova, E., Bykov, M., Prakapenka, V., Konôpková, Z., Liermann, H.-P., Dubrovinskaia, N., and Dubrovinsky, L.S. (2013) Novel high pressure monoclinic Fe2O3 polymorph revealed by single-crystal synchrotron X-ray diffraction studies. High Pressure Research, 33, 534–545.10.1080/08957959.2013.833613Search in Google Scholar

Bykova, E., Bobrov, A.V., Sirotkina, E.A., Bindi, L., Ovsyannikov, S.V., Dubrovin-sky, L.S., and Litvin, Y.A. (2014) X-ray single-crystal and Raman study of knorringite, Mg3(Cr1.58Mg0.21Si0.21)Si3O12, synthesized at 16 GPa and 1,600 °C. Physics and Chemistry of Minerals, 41, 267–272.10.1007/s00269-013-0644-ySearch in Google Scholar

Cerantola, V., McCammon, C., Kupenko, I., Kantor, I., Marini, C., Wilke, M., Ismailova, L., Solopova, N., Chumakov, A., Pascarelli, S., and others. (2015) High-pressure spectroscopic study of siderite (FeCO3) with a focus on spin crossover. American Mineralogist, 100, 2670–2681.10.2138/am-2015-5319Search in Google Scholar

Duffy, T.S., and Anderson, D.L. (1989) Seismic velocities in mantle minerals and the mineralogy of the upper mantle. Journal of Geophysical Research, 94, 1895.10.1029/JB094iB02p01895Search in Google Scholar

Dymshits, A.M., Litasov, K.D., Shatskiy, A., Sharygin, I.S., Ohtani, E., Suzuki, A., Pokhilenko, N.P., and Funakoshi, K. (2014a) P-V-T equation of state of Na-majorite to 21 GPa and 1673 K. Physics of the Earth and Planetary Interiors, 227, 68–75.10.1016/j.pepi.2013.11.005Search in Google Scholar

Dymshits, A.M., Litasov, K.D., Sharygin, I.S., Shatskiy, A., Ohtani, E., Suzuki, A., and Funakoshi, K. (2014b) Thermal equation of state of majoritic knorringite and its significance for continental upper mantle. Journal of Geophysical Research B: Solid Earth, 1–13.10.1002/2014JB011194Search in Google Scholar

Fei, Y., Ricolleau, A., Frank, M., Mibe, K., Shen, G., and Prakapenka, V. (2007) Toward an internally consistent pressure scale. Proceedings of the National Academy of Sciences, 104, 9182–9186.10.1073/pnas.0609013104Search in Google Scholar PubMed PubMed Central

Friedrich, A., Winkler, B., Morgenroth, W., Ruiz-Fuertes, J., Koch-Müller, M., Rhede, D., and Milman, V. (2014) Pressure-induced spin collapse of octahedrally coordinated Fe3+ in Ca3Fe2[SiO4]3. Physical Review B, 90, 094105.10.1103/PhysRevB.90.094105Search in Google Scholar

Friedrich, A., Winkler, B., Morgenroth, W., Perlov, A., and Milman, V. (2015) Pressure-induced spin collapse of octahedrally coordinated Mn3+ in the tetragonal hydrogarnet henritermierite Ca3Mn2[SiO4]2[O4H4]. Physical Review B, 92, 014117.10.1103/PhysRevB.92.014117Search in Google Scholar

Gwanmesia, G.D., Wang, L., Triplett, R., and Liebermann, R.C. (2009) Pressure and temperature dependence of the elasticity of pyrope–majorite [Py60Mj40 and Py50Mj50] garnets solid solution measured by ultrasonic interferometry technique. Physics of the Earth and Planetary Interiors, 174, 105–112.10.1016/j.pepi.2008.07.029Search in Google Scholar

Hazen, R.M., Downs, R.T., Conrad, P.G., Finger, L.W., and Gasparik, T. (1994) Comparative compressibilities of majorite-type garnets. Physics and Chemistry of Minerals, 21, 344–349.10.1007/BF00202099Search in Google Scholar

Heinemann, S., Sharp, T.G., and Seifert, F. (1997) The cubic-tetragonal phase transition in the system majorite and garnet symmetry in the Earth’s transition zone. Physics and Chemistry of Minerals, 24, 206–221.10.1007/s002690050034Search in Google Scholar

Hsu, H., Blaha, P., Cococcioni, M., and Wentzcovitch, R.M. (2011) Spin-state crossover and hyperfine interactions of ferric iron in MgSiO3 perovskite. Physical Review Letters, 106, 118501.10.1103/PhysRevLett.106.118501Search in Google Scholar PubMed

Irifune, T., Higo, Y., Inoue, T., Kono, Y., Ohfuji, H., and Funakoshi, K. (2008) Sound velocities of majorite garnet and the composition of the mantle transition region. Nature, 451, 814–817.10.1038/nature06551Search in Google Scholar PubMed

Ismailova, L., Bobrov, A., Bykov, M., Bykova, E., Cerantola, V., Kupenko, I., McCammon, C., Dyadkin, V., Chernyshov, D., Pascarelli, S., and others. (2015) High-pressure synthesis of skiagite-majorite garnet and investigation of its crystal structure. American Mineralogist, 100, 2650–2654.10.2138/am-2015-5278Search in Google Scholar

Ita, J., and Stixrude, L. (1992) Petrology, elasticity, and composition of the mantle transition. Journal of Geophysical Research, 97(B5), 6849–6866.10.1029/92JB00068Search in Google Scholar

Kantor, I., Dubrovinsky, L., and McCammon, C. (2006) Spin crossover in (Mg, Fe)O: A Mössbauer effect study with an alternative interpretation of X-ray emission spectroscopy data. Physical Review B, 73, 100101.10.1103/PhysRevB.73.100101Search in Google Scholar

Kato, T. (1986) Stability relation of (Mg, Fe)SiO3 garnets, major constituents in the Earth’s interior. Earth and Planetary Science Letters, 77, 399–408.10.1016/0012-821X(86)90149-4Search in Google Scholar

Lavina, B., Dera, P., Downs, R.T., Prakapenka, V., Rivers, M., Sutton, S., and Nicol, M. (2009) Siderite at lower mantle conditions and the effects of the pressure-induced spin-pairing transition. Geophysical Research Letters, 36, L23306.10.1029/2009GL039652Search in Google Scholar

Li, B., and Liebermann, R.C. (2007) Indoor seismology by probing the Earth’s interior by using sound velocity measurements at high pressures and temperatures. Proceedings of the National Academy of Sciences, 104(22), 9145–9150.10.1073/pnas.0608609104Search in Google Scholar

Liermann, H.-P., Konôpková, Z., Morgenroth, W., Glazyrin, K., Bednarčik, J., McBride, E.E., Petitgirard, S., Delitz J.T., Wendt, M., Bican, Y, and others. (2015) The Extreme Conditions Beamline P02.2 and the Extreme Conditions Science Infrastructure at PETRA III. Journal of Synchrotron Radiation, 22, 1–17.10.1107/S1600577515005937Search in Google Scholar

Liu, J., Chen, G., Gwanmesia, G.D., and Liebermann, R.C. (2000) Elastic wave velocities of a pyrope-majorite garnets (Py62Mj38 and Py50Maj50) to 9 GPa. Physics of the Earth and Planetary Interiors, 120, 153–163.10.1016/S0031-9201(00)00152-7Search in Google Scholar

Luth, R.W., Virgo, D., Boyd, F.R., and Wood, B.J. (1990) Ferric iron in mantle-derived garnets. Implications for thermobarometry and for the oxidation state of the mantle, Contributions to Mineralogy and Petrology, 104, 56–72.10.1007/BF00310646Search in Google Scholar

Matsubara, R., Toraya, H., Tanaka, S., and Sawamoto, H. (1990) Precision latticeparameter determination of (Mg, Fe)SiO3 tetragonal garnets. Science, 697–699.10.1126/science.247.4943.697Search in Google Scholar PubMed

McCammon, C.A., and Ross, N.L. (2003) Crystal chemistry of ferric iron in (Mg, Fe)(Si, Al)O3 majorite with implications for the transition zone. Physics and Chemistry of Minerals, 30, 206–216.10.1007/s00269-003-0309-3Search in Google Scholar

Merlini, M., and Hanfland, M. (2013) Single-crystal diffraction at megabar conditions by synchrotron radiation. High Pressure Research, 33, 511–522.10.1080/08957959.2013.831088Search in Google Scholar

Merlini, M., Hanfland, M., Gemmi, M., Huotari, S., Simonelli, L., and Strobel, P. (2010) Fe3+ spin transition in CaFe2O4 at high pressure. American Mineralogist, 95, 200–203.10.2138/am.2010.3347Search in Google Scholar

Milman, V., Akhmatskaya, E.V., Nobes, R.H., Winkler, B., Pickard, C.J., and White, J.A. (2001) Systematic ab initio study of the compressibility of silicate garnets. Acta Crystallographica, B57, 163–177.10.1107/S0108768100018188Search in Google Scholar

Momma, K., and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 1272–1276.10.1107/S0021889811038970Search in Google Scholar

Novak, G.A., and Gibbs, G.V. (1971) The crystal chemistry of the silicate garnets. American Mineralogist, 56, 791–825.Search in Google Scholar

Ohtani, E., Kagawa, N., and Fujino, K. (1991) Stability of majorite (Mg, Fe)SiO3 at high pressures and 1800 °C. Earth and Planetary Science Letters, 102, 158–166.10.1016/0012-821X(91)90005-3Search in Google Scholar

Oxford Diffraction (2006) CrysAlisPro. Oxford Diffraction Ltd., Abingdon, Oxfordshire, U.K.Search in Google Scholar

Petříček, V., Dušek, M., and Palatinus, L. (2014) Crystallographic Computing System JANA2006: General features. Zeitschrift für Kristallographie, 229, 345–352.10.1515/zkri-2014-1737Search in Google Scholar

Prescher, C., McCammon, C., and Dubrovinsky, L. (2012) MossA: a program for analyzing energy-domain Mössbauer spectra from conventional and synchrotron sources. Journal of Applied Crystallography, 45, 329–331.10.1107/S0021889812004979Search in Google Scholar

Ringwood, A.E. (1975) Composition and petrology of the Earth’s upper mantle.Search in Google Scholar

Rüffer, R., and Chumakov, A.I. (1996) Nuclear Resonance Beamline at ESRF. Hyperfine Interactions, 97-98, 589–604.10.1007/BF02150199Search in Google Scholar

Sinogeikin, S.V., and Bass, J.D. (2000) Single-crystal elasticity of pyrope and MgO to 20 GPa by Brillouin scattering in the diamond cell. Physics of the Earth and Planetary Interiors, 120, 43–62.10.1016/S0031-9201(00)00143-6Search in Google Scholar

—(2002) Elasticity of pyrope and majorite-pyrope solid solutions to high temperatures. Earth and Planetary Science Letters, 203, 549–555.10.1016/S0012-821X(02)00851-8Search in Google Scholar

Sirotkina, E.A., Bobrov, A.V., Bindi, L., and Irifune, T. (2015) Phase relations and formation of chromium-rich phases in the system Mg4Si4O12-Mg3Cr2Si3O12 at 10-24 GPa and 1,600 °C. Contributions to Mineralogy and Petrology, 169, doi:10.1007/s00410-014-1097–0.10.1007/s00410-014-1097-0Search in Google Scholar

Stan, C.V., Wang, J., Zouboulis, I.S., Prakapenka, V., and Duffy, T.S. (2015) High-pressure phase transition in Y3Fe5O12. Journal of Physics: Condensed Matter, 27, 405401.10.1088/0953-8984/27/40/405401Search in Google Scholar

Tomioka, N., Fujino, K., Ito, E., Katsura, T., Sharp, T.G., and Kato, T. (2002) Microstructures and structural phase transition in (Mg, Fe)SiO3 majorite. European Journal of Mineralogy, 14, 7–14.10.1127/0935-1221/2002/0014-0007Search in Google Scholar

Wood, B.J., Pawley, A., and Frost, D. (1996) Water and carbon in the Earth’s mantle. Philosophical Transactions of the Royal Society of London, 354, 1495–1511.10.1098/rsta.1996.0060Search in Google Scholar

Wood, B.J., Kiseeva, E.S., and Matzen, A.K. (2013) Garnet in the Earth’s mantle. Elements, 9, 421–426.10.2113/gselements.9.6.421Search in Google Scholar

Woodland, A.B., and Koch, M. (2003) Variation in oxygen fugacity with depth in the upper mantle beneath the Kaapvaal craton, Southern Africa. Earth and Planetary Science Letters, 214, 295–310.10.1016/S0012-821X(03)00379-0Search in Google Scholar

Woodland, A.B., and Ross, C.R. (1994) A crystallographic and Mössbauer spec-troscopy study of Fe3Al2Si3O12-Fe32+Fe23+ Si3O12 and Ca3Fe32+ Si3O12. Physics and Chemistry of Minerals, 21, 117–132.10.1007/BF00203142Search in Google Scholar

Woodland, A.B., Angel, R.J., Koch, M., Kunz, M., and Miletich, R. (1999) Equations of state for Fe3Fe2Si3O12 and Fe2SiO4-Fe3O4 spinel solid solutions. Journal of Geophysical Research, 104, 20049–20058.10.1029/1999JB900206Search in Google Scholar

Woodland, A.B., Bauer, M., Boffa Ballaran, T., and Hanrahan, M. (2009) Crystal chemistry of Fe32+ Cr2Si3O12-Fe32+Fe23+ Si3O12 garnet solid solutions and related spinels. American Mineralogist, 94, 359–366.10.2138/am.2009.3040Search in Google Scholar

Xu, W., Greenberg, E., Rozenberg, G.K., Pasternak, M.P., Bykova, E., Boffa-Ballaran, T., Dubrovinsky, L., Prakapenka, V., Hanfland, M., Vekilova, O.Y., and others. (2013) Pressure-induced hydrogen bond symmetrization in iron oxyhydroxide. Physical Review Letters, 111, 175501.10.1103/PhysRevLett.111.175501Search in Google Scholar PubMed

Received: 2016-5-16
Accepted: 2016-8-29
Published Online: 2017-1-3
Published in Print: 2017-1-1

© 2017 by Walter de Gruyter Berlin/Boston

Downloaded on 30.3.2023 from https://www.degruyter.com/document/doi/10.2138/am-2017-5856/html
Scroll to top button