Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 30, 2018

Liquid properties in the Fe-FeS system under moderate pressure: Tool box to model small planetary cores

Guillaume Morard, Johann Bouchet, Attilio Rivoldini, Daniele Antonangeli, Mathilde Roberge, Eglantine Boulard, Adrien Denoeud and Mohamed Mezouar
From the journal American Mineralogist

Abstract

Physical properties of liquid Fe-S alloys (from 10 to 50 at%S) under high pressure were investigated by in situ X‑ray diffraction (up to 5 GPa and 1900 K) and by ab initio calculations. The local structure of Fe-S liquid alloys clearly shows how S modifies the local arrangement of the Fe atoms. Density has been extracted from the diffuse scattering by minimization of the oscillation in the short distance of the radial distribution function g(r). Two different formalisms for the P-V-T-X equation of state are presented to model density and sound velocity as a function of pressure, temperature, and sulfur content. Based on these results, Moon’s core composition is discussed. This coherent data set will serve as a thermodynamically consistent ground for modeling the core of small telluric planets and large icy satellites.

Acknowledgments

The authors thank Stany Bauchau (ESRF) for his help with the X‑ray experiments. This work was supported by the Planetlab program of the French National Research Agency (ANR), grant No. ANR-12-BS04-001504. A.R. is supported by the Belgian PRODEX program managed by the European Space Agency in collaboration with the Belgian Federal Science Policy Office

References cited

Alfè, D., and Gillan, M.J. (1998) First-principles simulations of liquid Fe-S under Earth’s core conditions. Physical Review B, 58, 8248–8256.10.1103/PhysRevB.58.8248Search in Google Scholar

Andrault, D., Bolfan-Casanova, N., Ohtaka, O., Fukui, H., Arima, H., Fialin, M., and Funakoshi, K. (2009) Melting diagrams of Fe-rich alloys determined from synchrotron in situ measurements in the 15–23 GPa pressure range. Physics of the Earth and Planetary Interiors, 174, 181–191.10.1016/j.pepi.2008.09.020Search in Google Scholar

Antonangeli, D., Morard, G., Schmerr, N.C., Komabayashi, T., Krisch, M., Fiquet, G., Fei, Y., and Mao, H.-K. (2015) Toward a mineral physics reference model for the Moon’s core. Proceedings of the National Academy of Sciences, 112.10.1073/pnas.1417490112Search in Google Scholar

Assael, M.J., Kakosimos, K., Banish, R.M., Brillo, J., Egry, I., Brooks, R., Quested, P.N., Mills, K.C., Nagashima, A., Sato, Y., and others. (2006) Reference data for the density and viscosity of liquid aluminum and liquid iron. Journal of Physical and Chemical Reference Data, 35, 285–300.10.1063/1.2149380Search in Google Scholar

Balog, P.S., Secco, R.A., Rubie, D.C., and Frost, D.J. (2003) Equation of state of liquid Fe-10 wt% S: Implications for the metallic cores of planetary bodies. Journal of Geophysical Research-Solid Earth, 108.10.1029/2001JB001646Search in Google Scholar

Besson, J.M., Nelmes, R.J., Hamel, G., Loveday, J.S., Weill, G., and Hull, S. (1992) Neutron diffraction above 10 GPa. Physica B: Condensed Matter, 181, 907–910.10.1016/0921-4526(92)90505-MSearch in Google Scholar

Blochl, P.E. (1994) Projector augmented-wave method. Physical Review B, 50.10.1103/PhysRevB.50.17953Search in Google Scholar

Bottin, F., Leroux, S., Knyazev, A., and Zérah, G. (2008) Large-scale ab initio calculations based on three levels of parallelization. Computational Materials Science, 42, 329–336.10.1016/j.commatsci.2007.07.019Search in Google Scholar

Bouchet, J., Mazevet, S., Morard, G., Guyot, F., and Musella, R. (2013) Ab initio equation of state of iron up to 1500 GPa. Physical Review B—Condensed Matter and Materials Physics, 87, 1–8.10.1103/PhysRevB.87.094102Search in Google Scholar

Breuer, D., Rueckriemen, T., and Spohn, T. (2015) Iron snow, crystal floats, and inner-core growth: modes of core solidification and implications for dynamos in terrestrial planets and moons. Progress in Earth and Planetary Science, 2, 1–26.10.1186/s40645-015-0069-ySearch in Google Scholar

Buono, A.S., and Walker, D. (2011) The Fe-rich liquidus in the Fe-FeS system from 1bar to 10GPa. Geochimica et Cosmochimica Acta, 75, 2072–2087.10.1016/j.gca.2011.01.030Search in Google Scholar

Campbell, A.J., Seagle, C.T., Heinz, D.L., Shen, G., and Prakapenka, V.B. (2007) Partial melting in the iron-sulfur system at high pressure: A synchrotron X‑ray diffraction study. Physics of the Earth and Planetary Interiors, 162, 119–128.10.1016/j.pepi.2007.04.001Search in Google Scholar

Chabot, N.L. (2004) Sulfur contents of the parental metallic cores of magmatic iron meteorites. Geochimica et Cosmochimica Acta, 68, 3607–3618.10.1016/j.gca.2004.03.023Search in Google Scholar

Chen, B., Gao, L., Leinenweber, K., Wang, Y., Sanehira, T., and Li, J. (2008a) In situ investigation of high-pressure melting behavior in the Fe-S system using synchrotron X‑ray radiography. High Pressure Research, 28, 315–326.10.1080/08957950802318883Search in Google Scholar

Chen, B., Li, J., and Hauck, S.A. (2008b) Non-ideal liquidus curve in the Fe-S system and Mercury’s snowing core. Geophysical Research Letters, 35, 10–14.10.1029/2008GL033311Search in Google Scholar

Chen, B., Li, Z., Zhang, D., Liu, J., Hu, M.Y., Zhao, J., Bi, W., Alp, E.E., Xiao, Y., Chow, P., and others. (2014) Hidden carbon in Earth’s inner core revealed by shear softening in dense Fe7C3 Proceedings of the National Academy of Sciences, 111, 17755–17758.10.1073/pnas.1411154111Search in Google Scholar

Chen, J., Yu, T., Huang, S., Girard, J., and Liu, X. (2014) Compressibility of liquid FeS measured using X‑ray radiograph imaging. Physics of the Earth and Planetary Interiors, 228, 294–299.10.1016/j.pepi.2013.12.012Search in Google Scholar

Chudinovskikh, L., and Boehler, R. (2007) Eutectic melting in the system Fe-S to 44 GPa. Earth and Planetary Science Letters, 257, 97–103.10.1016/j.epsl.2007.02.024Search in Google Scholar

Dewaele, A., Torrent, M., Loubeyre, P., and Mezouar, M. (2008) Compression curves of transition metals in the Mbar range: Experiments and projector augmented-wave calculations. Physical Review B—Condensed Matter and Materials Physics, 78, 1–13.10.1103/PhysRevB.78.104102Search in Google Scholar

Dumberry, M., and Rivoldini, A. (2015) Mercury’s inner core size and corecrystallization regime. ICARUS, 248, 254–268.10.1016/j.icarus.2014.10.038Search in Google Scholar

Flory, M.A., McLamarrah, S.K., and Ziurys, L.M. (2005) High-resolution spectroscopy of CoS (X4Δi) Examining 3d transition-metal sulfide bonds. Journal of Chemical Physics, 123, 1–9.10.1063/1.2083507Search in Google Scholar

Garcia, R.F., Gagnepain-Beyneix, J., Chevrot, S., and Lognonné, P. (2011) Very preliminary reference Moon model. Physics of the Earth and Planetary Interiors, 188, 96–113.10.1016/j.pepi.2011.06.015Search in Google Scholar

Gonze, X., Jollet, F., Abreu Araujo, F., Adams, D., Amadon, B., Applencourt, T., Audouze, C., Beuken, J.M., Bieder, J., Bokhanchuk, A., and others. (2016) Recent developments in the ABINIT software package. Computer Physics Communications, 205, 106–131.10.1016/j.cpc.2016.04.003Search in Google Scholar

Greenwood, R.C., Franchi, I.A., Jambon, A., Barrat, J.A., and Burbine, T.H. (2006) Oxygen isotope variation in stony-iron meteorites. Science, 313, 1763.10.1126/science.1128865Search in Google Scholar

Hammersley, A.P., Svensson, S.O., Hanfland, M., Fitch, A.N., and Hausermann, D. (1996) Two-dimensionnal detector software: from real detector to idealised image or two-theta scan. High Pressure Research, 14, 235–248.10.1080/08957959608201408Search in Google Scholar

Jing, Z., Wang, Y., Kono, Y., Yu, T., Sakamaki, T., Park, C., Rivers, M.L., Sutton, S.R., and Shen, G. (2014) Sound velocity of Fe-S liquids at high pressure: Implications for the Moon’s molten outer core. Earth and Planetary Science Letters, 396, 78–87.10.1016/j.epsl.2014.04.015Search in Google Scholar

Kaiura, G.H., and Toguri, J.M. (1979) Densities of the molten FeS, FeS-Cu2S and Fe-S-O systems—utilizing a bottom-balance Archimedean technique. Canadian Metallurgical Quarterly, 18, 155–164.10.1179/cmq.1979.18.2.155Search in Google Scholar

Kamada, S., Ohtani, E., Terasaki, H., Sakai, T., Miyahara, M., Ohishi, Y., and Hirao, N. (2012) Melting relationships in the Fe-Fe3S system up to the outer core conditions. Earth and Planetary Science Letters, 359-360, 26–33.10.1016/j.epsl.2012.09.038Search in Google Scholar

Kleine, T., Touboul, M., Bourdon, B., Nimmo, F., Mezger, K., Palme, H., Jacobsen, S.B., Yin, Q., and Halliday, A.N. (2009) Hf–W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochimica et Cosmochimica Acta, 73, 5150–5188.10.1016/j.gca.2008.11.047Search in Google Scholar

Klotz, S., Strässle, T., Rousse, G., Hamel, G., and Pomjakushin, V. (2005) Angle-dispersive neutron diffraction under high pressure to 10 GPa. Applied Physics Letters, 86, 1–3.10.1063/1.1855419Search in Google Scholar

Klotz, S., Le Godec, Y., Strässle, T., and Stuhr, U. (2008) The α-γ-ɛ triple point of iron investigated by high pressure-high temperature neutron scattering. Applied Physics Letters, 93, 2008–2010. doi:10.1063/1.297612810.1063/1.2976128Search in Google Scholar

Komabayashi, T. (2014) Thermodynamics of melting relations in the system Fe-FeO at high pressure: Implications for oxygen in the Earth’s core. Journal of Geophysical Research: Solid Earth, 119, 4164–4177.10.1002/2014JB010980Search in Google Scholar

Kono, Y., Kenney-Benson, C., Shibazaki, Y., Park, C., Shen, G., and Wang, Y. (2015) High-pressure viscosity of liquid Fe and FeS revisited by falling sphere viscometry using ultrafast X‑ray imaging. Physics of the Earth and Planetary Interiors, 241, 57–64.10.1016/j.pepi.2015.02.006Search in Google Scholar

Kuskov, O.L., and Belashchenko, D.K. (2016) Thermodynamic properties of Fe-S alloys from molecular dynamics modeling: Implications for the lunar fluid core. Physics of the Earth and Planetary Interiors, 258, 43–50.10.1016/j.pepi.2016.07.006Search in Google Scholar

Laneuville, M., Wieczorek, M.A., Breuer, D., Aubert, J., Morard, G., and Rückriemen, T. (2014) A long-lived lunar dynamo powered by core crystallization. Earth and Planetary Science Letters, 401.10.1016/j.epsl.2014.05.057Search in Google Scholar

LeBlanc, G.E., and Secco, R.A. (1996) Viscosity of an Fe-S liquid up to 1300 degrees C and 5 GPa. Geophysical Research Letters, 23, 213–216.10.1029/96GL00216Search in Google Scholar

Margot, J.L., Peale, S.J., Jurgens, R.F., Slade, M.A., and Holin, I.V (2007) Large longitude libration of Mercury reveals a molten core. Science, 316, 710–714.10.1126/science.1140514Search in Google Scholar

Mezouar, M., Le Bihan, T., Libotte, H., Le Godec, Y., and Häusermann, D. (1999) Paris-Edinburgh large-volume cell coupled with a fast imaging plate system for structural investigation at high pressure and high-temperature. Journal of Synchrotron Radiation, 6, 1115–1119.10.1107/S0909049599010651Search in Google Scholar

Mezouar, M., Faure, P., Crichton, W., Rambert, N., Sitaud, B., Bauchau, S., and Blattmann, G. (2002) Multichannel collimator for structural investigation of liquids and amorphous materials at high pressures and temperatures. Review of Scientific Instruments, 73, 3570.10.1063/1.1505104Search in Google Scholar

Mezouar, M., Crichton, W.A., Bauchau, S., Thurel, F., Witsch, H., Torrecillas, F., Blattman, G., Marion, P., Dabin, Y., Chavanne, J., and others. (2005) Development of a new state-of-the-art beamline optimized for monochromatic single crystal and powder X‑ray diffraction under extreme conditions at the ESRF. Journal of Synchrotron Radiation, 12, 659–664.10.1107/S0909049505023216Search in Google Scholar

Morard, G., Mezouar, M., Rey, N., Poloni, R., Merlen, A., Le Floch, S., Toulemonde, P., Pascarelli, S., San-Miguel, A., Sanloup, C., and others. (2007a) Optimization of Paris-Edinburgh press cell assemblies for in situ monochromatic X‑ray diffraction and X‑ray absorption. High Pressure Research, 27, 223–233.10.1080/08957950601183553Search in Google Scholar

Morard, G., Sanloup, C., Fiquet, G., Mezouar, M., Rey, N., Poloni, R., and Beck, P. (2007b) Structure of eutectic Fe-FeS melts to pressures up to 17 GPa: Implications for planetary cores. Earth and Planetary Science Letters, 263, 128–139.10.1016/j.epsl.2007.09.009Search in Google Scholar

Morard, G., Andrault, D., Guignot, N., Sanloup, C., Mezouar, M., Petitgirard, S., and Fiquet, G. (2008a) In situ determination of Fe-Fe3S phase diagram and liquid structural properties up to 65 GPa. Earth and Planetary Science Letters, 272, 620–626.10.1016/j.epsl.2008.05.028Search in Google Scholar

Morard, G., Sanloup, C., Guillot, B., Fiquet, G., Mezouar, M., Perrillat, J.P., Garbarino, G., Mibe, K., Komabayashi, T., and Funakoshi, K. (2008b) In situ structural investigation of Fe-S-Si immiscible liquid system and evolution of Fe-S bond properties with pressure. Journal of Geophysical Research: Solid Earth, 113, 1–12.10.1029/2008JB005663Search in Google Scholar

Morard, G., Mezouar, M., Bauchau, S., Lvarez-Murga, M., Hodeau, J.L., and Garbarino, G. (2011) High efficiency multichannel collimator for structural studies of liquids and low-Z materials at high pressures and temperatures. Review of Scientific Instruments, 82, 2–7.10.1063/1.3551988Search in Google Scholar

Morard, G., Siebert, J., Andrault, D., Guignot, N., Garbarino, G., Guyot, F., and Antonangeli, D. (2013) The Earth’s core composition from high pressure density measurements of liquid iron alloys. Earth and Planetary Science Letters, 373.10.1016/j.epsl.2013.04.040Search in Google Scholar

Nagamori, M. (1969) Density of molten Ag–S, Cu–S, Fe–S, and Ni–S systems. Transactions of the Metallurgical Society AIME, 245, 1897–1902.Search in Google Scholar

Nasch, P.M., and Manghnani, M.H. (1998) Molar volume, thermal expansion, and bulk modulus in liquid Fe-Ni alloys at 1 bar: Evidence for magnetic anomalies? Geophysical Monograph, 101, 307–317.10.1029/GM101p0307Search in Google Scholar

Nasch, P.M., and Steinemann, S.G. (1995) Density and thermal expansion of molten manganese, iron, nickel, copper, aluminum and tin by means of the gamma-ray attenuation technique. Physics and Chemistry of Liquids, 29, 43–58.10.1080/00319109508030263Search in Google Scholar

Nasch, P., Manghnani, M., and Secco, R. (1997) Anomalous behavior of sound velocity and attenuation in liquid Fe-Ni-S. Science, 277, 219.10.1126/science.277.5323.219Search in Google Scholar

Nishida, K., Terasaki, H., Ohtani, E., and Suzuki, A. (2008) The effect of sulfur content on density of the liquid Fe-S at high pressure. Physics and Chemistry of Minerals, 35, 417–423.10.1007/s00269-008-0236-4Search in Google Scholar

Nishida, K., Ohtani, E., Urakawa, S., Suzuki, A., Sakamaki, T., Terasaki, H., and Katayama, Y. (2011) Density measurements of liquid FeS at high pressures using synchrotron X‑ray absorption. American Mineralogist, 96, 864–868.10.2138/am.2011.3616Search in Google Scholar

Nishida, K., Kono, Y., Terasaki, H., Takahashi, S., Ishii, M., Shimoyama, Y., Higo, Y., Funakoshi, K.I., Irifune, T., and Ohtani, E. (2013) Sound velocity measurements in liquid Fe-S at high pressure: Implications for Earth’s and lunar cores. Earth and Planetary Science Letters, 362, 182–186.10.1016/j.epsl.2012.11.042Search in Google Scholar

Nishida, K., Suzuki, A., Terasaki, H., Shibazaki, Y., Higo, Y., Kuwabara, S., Shimoyama, Y., Sakurai, M., Ushioda, M., Takahashi, E., and others. (2016) Towards a consensus on the pressure and composition dependence of sound velocity in the liquid Fe–S system. Physics of the Earth and Planetary Interiors, 257, 230–239.10.1016/j.pepi.2016.06.009Search in Google Scholar

Perdew, J.P., Burke, K., and Ernzerhof, M. (1996) Generalized gradient approximation made simple. Physical Review Letters, 77, 3865–3868.10.1103/PhysRevLett.77.3865Search in Google Scholar

Poirier, J.P. (1994) Light elements in the Earth’s outer core: A critical review. Physics of the Earth and Planetary Interiors, 85, 319–337.10.1016/0031-9201(94)90120-1Search in Google Scholar

Poirier, J.P. (2000) Introduction to the Physics of the Earth’s Interior. Cambridge University Press.10.1017/CBO9781139164467Search in Google Scholar

Pourovskii, L.V., Miyake, T., Simak, S.I., Ruban, A.V., Dubrovinsky, L., and Abrikosov, I.A. (2013) Electronic properties and magnetism of iron at the Earth’s inner core conditions. Physical Review B—Condensed Matter and Materials Physics, 87.10.1103/PhysRevB.87.115130Search in Google Scholar

Rivoldini, A., Van Hoolst, T., and Verhoeven, O. (2009) The interior structure of Mercury and its core sulfur content. Icarus, 201, 12–30.10.1016/j.icarus.2008.12.020Search in Google Scholar

Sanloup, C., Guyot, F., Gillet, P., Fiquet, G., Mezouar, M., and Martinez, I. (2000) Density measurements of liquid Fe-S alloys at high pressure. Geophysical Research Letters, 27, 811–814.10.1029/1999GL008431Search in Google Scholar

Sherman, D.M. (1995) pressure and the composition of the Earth’s core. Earth and Planetary Science Letters, 132, 87–98.10.1016/0012-821X(95)00057-JSearch in Google Scholar

Stewart, A.J., Schmidt, M.W., van Westrenen, W., and Liebske, C. (2007) Mars: A New Core-Crystallization Regime. Science, 316, 1323–1325.10.1126/science.1140549Search in Google Scholar

Torrent, M., Jollet, F., Bottin, F., Zérah, G., and Gonze, X. (2008) Implementation of the projector augmented-wave method in the ABINIT code: Application to the study of iron under pressure. Computational Materials Science, 42, 337–351.10.1016/j.commatsci.2007.07.020Search in Google Scholar

Tsuchiya, Y. (1994) The thermodynamics of structural changes in the liquid sulphur-tellurium system: compressibility and Ehrenfest’s relations. Journal of Physics: Condensed Matter, 6, 2451.10.1088/0953-8984/6/13/007Search in Google Scholar

Urakawa, S., Someya, K., Terasaki, H., Katsura, T., Yokoshi, S., Funakoshi, K.-i., Utsumi, W., Katayama, Y., Sueda, Y.-i., and Irifune, T. (2004) Phase relationships and equations of state for FeS at high pressures temperatures and implications for the internal structure of Mars. Physics of the Earth and Planetary Interiors, 143, 469–479. doi:10.1016/j.pepi.2003.12.01510.1016/j.pepi.2003.12.015Search in Google Scholar

Utsumi, W., Weidner, D.J., and Liebermann, R.C. (1998) Volume measurement of MgO at high pressures and high temperatures. Geophysical Monograph, 101, 327–333.10.1029/GM101p0327Search in Google Scholar

Vočadlo, L., Alfè, D., Price, G.D., and Gillan, M.J. (2000) First principles calculations on the diffusivity and viscosity of liquid Fe-S at experimentally accessible conditions. Physics of the Earth and Planetary Interiors, 120, 145–152.10.1016/S0031-9201(00)00151-5Search in Google Scholar

Weber, R.C., Lin, P.-Y., Garnero, E.J., Williams, Q., and Lognonne, P. (2011) Seismic Detection of the lunar Core. Science, 331, 309–312.10.1126/science.1199375Search in Google Scholar

Williams, Q. (2009) Bottom-up versus top-down solidification of the cores of small solar system bodies: Constraints on paradoxical cores. Earth and Planetary Science Letters, 284, 564–569.10.1016/j.epsl.2009.05.019Search in Google Scholar

Williams, J.G., Konopliv, A.S., Boggs, D.H., Park, R.S., Yuan, D., Lemoine, F.G., Goossens, S., Mazarico, E., Nimmo, F., Weber, R.C., and others. (2014) lunar interior properties from the GRAIL mission. Journal of Geophysical Research: Planets, 119, 1546–1578.10.1002/2013JE004559Search in Google Scholar

Yoder, C.F., Konopliv, A.S., Yuan, D.N., Standish, E.M., and Folkner, W.M. (2003) Fluid core size of Mars from detection of the solar tide. Science, 300, 299–303.10.1126/science.1079645Search in Google Scholar

Yoshino, T., Walter, M.J., and Katsura, T. (2003) Core formation in planetesimals triggered by permeable flow. Nature, 422, 154–157.10.1038/nature01459Search in Google Scholar

Zhang, Z., and Pommier, A. (2017) Electrical investigation of metal-olivine systems and application to the deep interior of Mercury. Journal of Geophysical Research: Planets, 122, 2702–2718.10.1002/2017JE005390Search in Google Scholar

Received: 2017-11-23
Accepted: 2018-07-06
Published Online: 2018-10-30
Published in Print: 2018-11-27

© 2018 Walter de Gruyter GmbH, Berlin/Boston