Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 20, 2019

The quench control of water estimates in convergent margin magmas

Maxim Gavrilenko, Michael Krawczynski, Philipp Ruprecht, Wenlu Li and Jeffrey G. Catalano
From the journal American Mineralogist

Abstract

Here we present a study on the quenchability of hydrous mafic melts. We show via hydrothermal experiments that the ability to quench a mafic hydrous melt to a homogeneous glass at cooling rates relevant to natural samples has a limit of no more than 9 ± 1 wt% of dissolved H2O in the melt. We performed supra-liquidus experiments on a mafic starting composition at 1–1.5 GPa spanning H2O-undersaturated to H2O-saturated conditions (from ~1 to ~21 wt%). After dissolving H2O and equilibrating, the hydrous mafic melt experiments were quenched. Quenching rates of 20 to 90 K/s at the glass transition temperature were achieved, and some experiments were allowed to decompress from thermal contraction while others were held at an isobaric condition during quench. We found that quenching of a hydrous melt to a homogeneous glass at quench rates comparable to natural conditions is possible at water contents up to 6 wt%. Melts containing 6–9 wt% of H2O are partially quenched to a glass, and always contain significant fractions of quench crystals and glass alteration/devitrification products. Experiments with water contents greater than 9 wt% have no optically clear glass after quench and result in fine-grained mixtures of alteration/devitrification products (minerals and amorphous materials). Our limit of 9 ± 1 wt% agrees well with the maximum of dissolved H2O contents found in natural glassy melt inclusions (8.5 wt% H2O). Other techniques for estimating pre-eruptive dissolved H2O content using petrologic and geochemical modeling have been used to argue that some arc magmas are as hydrous as 16 wt% H2O. Thus, our results raise the question of whether the observed record of glassy melt inclusions has an upper limit that is partially controlled by the quenching process. This potentially leads to underestimating the maximum amount of H2O recycled at arcs when results from glassy melt inclusions are predominantly used to estimate water fluxes from the mantle.

Acknowledgments

We thank Paul Carpenter for invaluable assistance with EPMA analyses at Washington University in St. Louis. Additionally we are grateful to Tatiana Shishkina for thorough discussion and to Hélène Couvy for her comprehensive assistance in lab work. We thank Terry Plank for providing secondary SIMS standards ND-6001 and ND70-01. Maxim Portnyagin, Glenn Gaetani, Adam Kent, Thomas Sisson, and Michel Pichavant are sincerely thanked for providing insightful comments and criticism that helped us to rethink some of our ideas and sharpened the discussion of the paper. Constructive reviews from Matthew Steele-MacInnis, Michael Rowe, and one anonymous reviewer improved the clarity of our arguments and data presentation. We thank Kyle Ashley for his editorial handling of the manuscript.

  1. Funding M.G. acknowledges support from McDonnell Center for the Space Sciences. M.K. acknowledges support from U.S. National Science Foundation grant EAR 1654683. P.R. acknowledges support from U. S. National Science Foundation grant EAR 1719687. J.G.C. acknowledges support from U.S. National Aeronautics and Space Administration grant NNX14AJ95G.

References cited

Anderson, A.T. (1991) Hourglass inclusions: Theory and application to the Bishop Rhyolitic Tuff. American Mineralogist, 76, 530–547.Search in Google Scholar

Ariskin, A.A., Barmina, G.S., Ozerov, A.Y., and Nielsen, R.L. (1995) Genesis of high-alumina basalts from Klyuchevskoi volcano. Petrology, 3(5), 449–472.Search in Google Scholar

Auer, S., Bindeman, I., Wallace, P., Ponomareva, V., and Portnyagin, M. (2009) The origin of hydrous, high-d18O voluminous volcanism: diverse oxygen isotope values and high magmatic water contents within the volcanic record of Klyuchevskoy volcano, Kamchatka, Russia. Contributions to Mineralogy and Petrology, 157(2), 209–230. DOI: 10.1007/s00410-008-0330-010.1007/s00410-008-0330-0Search in Google Scholar

Ayers, J.C., Brenan, J.B., Watson, E.B., Wark, D.A., and Minarik, W.G. (1992) A new capsule technique for hydrothermal experiments using the piston-cylinder apparatus. American Mineralogist, 77, 1080–1086.Search in Google Scholar

Baker, D.R., and Alletti, M. (2012) Fluid saturation and volatile partitioning between melts and hydrous fluids in crustal magmatic systems: The contribution of experimental measurements and solubility models. Earth-Science Reviews, 114(3-4), 298–324. DOI: 10.1016/j.earscirev.2012.06.00510.1016/j.earscirev.2012.06.005Search in Google Scholar

Baker, M.B., Grove, T.L., and Price, R. (1994) Primitive basalts and andesites from the Mt. Shasta region, N. California: products of varying melt fraction and water content. Contributions to Mineralogy and Petrology, 118(2), 111–129. DOI: 10.1007/bf0105286310.1007/bf01052863Search in Google Scholar

Behrens, H., Misiti, V., Freda, C., Vetere, F., Botcharnikov, R.E., and Scarlato, P. (2009) Solubility of H2O and CO2 in ultrapotassic melts at 1200 and 1250 °C and pressure from 50 to 500 MPa. American Mineralogist, 94, 105–120. DOI: 10.2138/am.2009.279610.2138/am.2009.2796Search in Google Scholar

Berndt, J., Liebske, C., Holtz, F., Freise, M., Nowak, M., Ziegenbein, D., Hurkuck, W., and Koepke, J. (2002) A combined rapid-quench and H2-membrane setup for internally heated pressure vessels: Description and application for water solubility in basaltic melts. American Mineralogist, 87, 1717–1726. DOI: 10.2138/am-2002-11-122210.2138/am-2002-11-1222Search in Google Scholar

Bista, S., Stebbins, J.F., Hankins, W.B., and Sisson, T.W. (2015) Aluminosilicate melts and glasses at 1 to 3 GPa: Temperature and pressure effects on recovered structural and density changes. American Mineralogist, 100, 2298–2307. DOI: 10.2138/am-2015-525810.2138/am-2015-5258Search in Google Scholar

Blundy, J., and Cashman, K. (2008) Petrologic reconstruction of magmatic system variables and processes. Reviews in Mineralogy and Geochemistry, 69, 179–239.10.1515/9781501508486-007Search in Google Scholar

Bonatti, E. (1965) Palagonite, hyaloclastites and alteration of volcanic glass in the ocean. Bulletin Volcanologique, 28(1), 257–269. DOI: 10.1007/bf0259693010.1007/bf02596930Search in Google Scholar

Botcharnikov, R.E., Almeev, R.R., Koepke, J., and Holtz, F. (2008) Phase relations and liquid lines of descent in hydrous ferrobasalt—Implications for the Skaergaard Intrusion and Columbia River Flood Basalts. Journal of Petrology, 49(9), 1687–1727. DOI: 10.1093/petrology/egn04310.1093/petrology/egn043Search in Google Scholar

Bouvet de Maisonneuve, C., Dungan, M.A., Bachmann, O., and Burgisser, A. (2012) Insights into shallow magma storage and crystallization at Volcán Llaima (Andean Southern Volcanic Zone, Chile). Journal of Volcanology and Geothermal Research, 211-212, 76–91. DOI: 10.1016/j.jvolgeores.2011.09.01010.1016/j.jvolgeores.2011.09.010Search in Google Scholar

Boyd, F. R., and England, J.L. (1960) Apparatus for phase-equilibrium measurements at pressures up to 50 kilobars and temperatures up to 1750°C. Journal of Geophysical Research, 65(2), 741–748. DOI: 10.1029/JZ065i002p0074110.1029/JZ065i002p00741Search in Google Scholar

Brenan, J.M., Shaw, H.F., Phinney, D.L., and Ryerson, F.J. (1994) Rutile-aqueous fluid partitioning of Nb, Ta, Hf, Zr, U and Th: implications for high field strength element depletions in island-arc basalts. Earth and Planetary Science Letters, 128(3), 327–339. DOI: 10.1016/0012-821X(94)90154-610.1016/0012-821X(94)90154-6Search in Google Scholar

Brenan, J.M., Shaw, H.F., Ryerson, F.J., and Phinney, D.L. (1995) Mineral-aqueous fluid partitioning of trace elements at 900°C and 2.0 GPa: Constraints on the trace element chemistry of mantle and deep crustal fluids. Geochimica et Cosmochimica Acta, 59(16), 3331–3350. DOI: 10.1016/0016-7037(95)00215-L10.1016/0016-7037(95)00215-LSearch in Google Scholar

Bryant, J.A., Yogodzinski, G.M., and Churikova, T.G. (2007) Melt-mantle interactions beneath the Kamchatka arc: Evidence from ultramafic xenoliths from Shiveluch volcano. Geochemistry, Geophysics, Geosystems, 8(4), Q04007. DOI: 10.1029/2006gc00144310.1029/2006gc001443Search in Google Scholar

Bucholz, C.E., Gaetani, G.A., Behn, M.D., and Shimizu, N. (2013) Post-entrapment modification of volatiles and oxygen fugacity in olivine-hosted melt inclusions. Earth and Planetary Science Letters, 374, 145–155. DOI:10.1016/j.epsl.2013.05.033.10.1016/j.epsl.2013.05.033Search in Google Scholar

Cai, C., Wiens, D.A., Shen, W., and Eimer, M. (2018) Water input into the Mariana subduction zone estimated from ocean-bottom seismic data. Nature, 563, 389–392.10.1038/s41586-018-0655-4Search in Google Scholar

Carmichael, I.S. (2002) The andesite aqueduct: perspectives on the evolution of intermediate magmatism in west-central (105–99°W) Mexico. Contributions to Mineralogy and Petrology, 143(6), 641–663. DOI: 10.1007/s00410-002-0370-910.1007/s00410-002-0370-9Search in Google Scholar

Carroll, M.R., and Stolper, E.M. (1993) Noble gas solubilities in silicate melts and glasses: New experimental results for argon and the relationship between solubility and ionic porosity. Geochimica et Cosmochimica Acta, 57(23), 5039–5051. DOI: 10.1016/0016-7037(93)90606-W10.1016/0016-7037(93)90606-WSearch in Google Scholar

Cashman, K.V. (2004) Volatile controls on magma ascent and eruption. In R. S.J. Sparks and C.J. Hawkesworth, Eds., The State of the Planet: Frontiers and Challenges in Geophysics, 150, p. 109–124. American Geophysical Union.10.1029/150GM10Search in Google Scholar

Chen, Y., Provost, A., Schiano, P., and Cluzel, N. (2011) The rate of water loss from olivine-hosted melt inclusions. Contributions to Mineralogy and Petrology, 162(3), 625–636. DOI: 10.1007/s00410-011-0616-510.1007/s00410-011-0616-5Search in Google Scholar

Chertkova, N., and Yamashita, S. (2015) In situ spectroscopic study of water speciation in the depolymerized Na2Si2O5 melt. Chemical Geology, 409, 149–156. DOI: 10.1016/j.chemgeo.2015.05.01210.1016/j.chemgeo.2015.05.012Search in Google Scholar

Churikova, T., Wörner, G., Mironov, N., and Kronz, A. (2007) Volatile (S, Cl and F) and fluid mobile trace element compositions in melt inclusions: implications for variable fluid sources across the Kamchatka arc. Contributions to Mineralogy and Petrology, 154(2), 217–239. DOI: 10.1007/s00410-007-0190-z10.1007/s00410-007-0190-zSearch in Google Scholar

Cooper, L.B., Plank, T., Arculus, R.J., Hauri, E.H., Hall, P.S., and Parman, S.W. (2010) High-Ca boninites from the active Tonga Arc. Journal of Geophysical Research: Solid Earth, 115(B10), B10206. DOI: 10.1029/2009JB00636710.1029/2009JB006367Search in Google Scholar

Cottrell, E., and Kelley, K.A. (2011) The oxidation state of Fe in MORB glasses and the oxygen fugacity of the upper mantle. Earth and Planetary Science Letters, 305(3–4), 270–282. DOI: 10.1016/j.epsl.2011.03.01410.1016/j.epsl.2011.03.014Search in Google Scholar

Dahm, T. (2000) On the shape and velocity of fluid-filled fractures in the Earth. Geophysical Journal International, 142(1), 181–192. DOI: 10.1046/j.1365-246x.2000.00148.x10.1046/j.1365-246x.2000.00148.xSearch in Google Scholar

Danyushevsky, L.V., McNeill, A.W., and Sobolev, A.V. (2002) Experimental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: an overview of techniques, advantages and complications. Chemical Geology, 183(1–4), 5–24. DOI: 10.1016/S0009-2541(01)00369-210.1016/S0009-2541(01)00369-2Search in Google Scholar

de Moor, J.M., Fischer, T.P., King, P.L., Botcharnikov, R.E., Hervig, R.L., Hilton, D.R., Barry, P.H., Mangasini, F., and Ramirez, C. (2013) Volatile-rich silicate melts from Oldoinyo Lengai volcano (Tanzania): Implications for carbonatite genesis and eruptive behavior. Earth and Planetary Science Letters, 361, 379–390. DOI: 10.1016/j.epsl.2012.11.00610.1016/j.epsl.2012.11.006Search in Google Scholar

Demouchy, S., Jacobsen, S.D., Gaillard, F., and Stern, C.R. (2006) Rapid magma ascent recorded by water diffusion profiles in mantle olivine. Geology, 34(6), 429–432.10.1130/G22386.1Search in Google Scholar

Deubener, J., Müller, R., Behrens, H., and Heide, G. (2003) Water and the glass transition temperature of silicate melts. Journal of Non-Crystalline Solids, 330(1), 268–273. DOI: 10.1016/S0022-3093(03)00472-110.1016/S0022-3093(03)00472-1Search in Google Scholar

Devine, J.D., Gardner, J.E., Brack, H.P., Layne, G.D., and Rutherford, M.J. (1995) Comparison of microanalytical methods for estimating H2O contents of silicic volcanic glasses. American Mineralogist, 80, 319–328. DOI: 10.2138/am-1995-3-41310.2138/am-1995-3-413Search in Google Scholar

Di Carlo, I.D.A., Pichavant, M., Rotolo, S.G., and Scaillet, B. (2006) Experimental Crystallization of a High-K Arc Basalt: the Golden Pumice, Stromboli Volcano (Italy). Journal of Petrology, 47(7), 1317–1343. DOI: 10.1093/petrology/egl01110.1093/petrology/egl011Search in Google Scholar

Di Genova, D., Vasseur, J., Hess, K.-U., Neuville, D.R., and Dingwell, D.B. (2017) Effect of oxygen fugacity on the glass transition, viscosity and structure of silica- and iron-rich magmatic melts. Journal of Non-Crystalline Solids, 470, 78–85.10.1016/j.jnoncrysol.2017.05.013Search in Google Scholar

Dingwell, D.B., and Webb, S.L. (1990) Relaxation in silicate melts. European Journal of Mineralogy, 2(4), 427–449. DOI: 10.1127/ejm/2/4/042710.1127/ejm/2/4/0427Search in Google Scholar

Erdmann, M., and Koepke, J. (2016) Silica-rich lavas in the oceanic crust: experimental evidence for fractional crystallization under low water activity. Contributions to Mineralogy and Petrology, 171(10), 83. DOI: 10.1007/s00410-016-1294-010.1007/s00410-016-1294-0Search in Google Scholar

Esposito, R., Lamadrid, H.M., Redi, D., Steele-MacInnis, M., Bodnar, R.J., Manning, C.E., De Vivo, B., Cannatelli, C., and Lima, A. (2016) Detection of liquid H2O in vapor bubbles in reheated melt inclusions: Implications for magmatic fluid composition and volatile budgets of magmas? American Mineralogist, 101, 1691–1695.10.2138/am-2016-5689Search in Google Scholar

Ferguson, D.J., Gonnermann, H.M., Ruprecht, P., Plank, T., Hauri, E.H., Houghton, B.F., and Swanson, D.A. (2016) Magma decompression rates during explosive eruptions of Kīlauea volcano, Hawaii, recorded by melt embayments. Bulletin of Volcanology, 78(10), 1–12. DOI: 10.1007/s00445-016-1064-x10.1007/s00445-016-1064-xSearch in Google Scholar

Fischer, T.P., and Marty, B. (2005) Volatile abundances in the sub-arc mantle: insights from volcanic and hydrothermal gas discharges. Journal of Volcanology and Geothermal Research, 140(1–3), 205–216. DOI: 10.1016/j.jvolgeores.2004.07.022.10.1016/j.jvolgeores.2004.07.022Search in Google Scholar

Földvári, M. (2011) Handbook of Thermogravimetric System of Minerals and Its Use in Geological Practice, 179 p. Geological Institute of Hungary (=Magyar Állami Földtani Intézet).Search in Google Scholar

Frezzotti, M.-L. (2001) Silicate-melt inclusions in magmatic rocks: applications to petrology. Lithos, 55(1), 273–299. DOI: 10.1016/S0024-4937(00)00048-710.1016/S0024-4937(00)00048-7Search in Google Scholar

Gaetani, G.A., and Watson, E.B. (2000) Open system behavior of olivine-hosted melt inclusions. Earth and Planetary Science Letters, 183(1–2), 27–41. DOI: 10.1016/S0012-821X(00)00260-010.1016/S0012-821X(00)00260-0Search in Google Scholar

Gaetani, G.A., O’Leary, J.A., Shimizu, N., Bucholz, C.E., and Newville, M. (2012) Rapid reequilibration of H2O and oxygen fugacity in olivine-hosted melt inclusions. Geology, 40(10), 915–918. DOI: 10.1130/g32992.110.1130/g32992.1Search in Google Scholar

Gavrilenko, M., Herzberg, C., Vidito, C., Carr, M.J., Tenner, T., and Ozerov, A. (2016a) A calcium-in-olivine geohygrometer and its application to subduction zone magmatism. Journal of Petrology, 57(9), 1811–1832. DOI: 10.1093/petrology/egw06210.1093/petrology/egw062Search in Google Scholar

Gavrilenko, M., Ozerov, A., Kyle, P.R., Carr, M. J., Nikulin, A., Vidito, C., and Danyushevsky, L. (2016b) Abrupt transition from fractional crystallization to magma mixing at Gorely volcano (Kamchatka) after caldera collapse. Bulletin of Volcanology, 78, 47. DOI: 10.1007/s00445-016-1038-z10.1007/s00445-016-1038-zSearch in Google Scholar

Gordeychik, B., Churikova, T., Kronz, A., Sundermeyer, C., Simakin, A., and Wörner, G. (2018) Growth of, and diffusion in, olivine in ultra-fast ascending basalt magmas from Shiveluch volcano. Scientific Reports, 8(1), 11,775.10.1038/s41598-018-30133-1Search in Google Scholar PubMed PubMed Central

Grove, T., Elkins-Tanton, L., Parman, S., Chatterjee, N., Müntener, O., and Gaetani, G. (2003) Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contributions to Mineralogy and Petrology, 145(5), 515–533.10.1007/s00410-003-0448-zSearch in Google Scholar

Grove, T.L., Baker, M.B., Price, R.C., Parman, S.W., Elkins-Tanton, L.T., Chatterjee, N., and Müntener, O. (2005) Magnesian andesite and dacite lavas from Mt. Shasta, northern California: products of fractional crystallization of H2O-rich mantle melts. Contributions to Mineralogy and Petrology, 148(5), 542–565.10.1007/s00410-004-0619-6Search in Google Scholar

Grove, T.L., Chatterjee, N., Parman, S.W., and Médard, E. (2006) The influence of H2O on mantle wedge melting. Earth and Planetary Science Letters, 249(1–2), 74–89.10.1016/j.epsl.2006.06.043Search in Google Scholar

Grove, T.L., Till, C.B., and Krawczynski, M.J. (2012) The role of H2O in subduction zone magmatism. Annual Review of Earth and Planetary Sciences, 40(1), 413–439.10.1146/annurev-earth-042711-105310Search in Google Scholar

Guggenheim, S., and van Groos, A.F.K. (2001) Baseline studies of the Clay Minerals Society Source Clays: Thermal analysis. Clays and Clay Minerals, 49(5), 433–443.10.1346/CCMN.2001.0490509Search in Google Scholar

Guillot, B., and Sarda, P. (2006) The effect of compression on noble gas solubility in silicate melts and consequences for degassing at mid-ocean ridges. Geochimica et Cosmochimica Acta, 70(5), 1215–1230. DOI: 10.1016/j.gca.2005.11.00710.1016/j.gca.2005.11.007Search in Google Scholar

Guillot, B., and Sator, N. (2012) Noble gases in high-pressure silicate liquids: A computer simulation study. Geochimica et Cosmochimica Acta, 80, 51–69. DOI: 10.1016/j. gca.2011.11.04010.1016/j.gca.2011.11.040Search in Google Scholar

Hacker, B.R. (2008) H2O subduction beyond arcs. Geochemistry, Geophysics, Geosystems, 9(3), Q03001. DOI: 10.1029/2007GC00170710.1029/2007GC001707Search in Google Scholar

Hacker, B.R., Abers, G.A., and Peacock, S.M. (2003) Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents. Journal of Geophysical Research: Solid Earth, 108(B1). DOI: 10.1029/2001JB00112710.1029/2001JB001127Search in Google Scholar

Hamilton, D.L., Burnham, C.W., and Osborn, E.F. (1964) The solubility of water and effects of oxygen fugacity and water content on crystallization in mafic magmas. Journal of Petrology, 5(1), 21–39. DOI: 10.1093/petrology/5.1.2110.1093/petrology/5.1.21Search in Google Scholar

Hartley, M.E., Maclennan, J., Edmonds, M., and Thordarson, T. (2014) Reconstructing the deep CO2 degassing behaviour of large basaltic fissure eruptions. Earth and Planetary Science Letters, 393, 120–131. DOI: 10.1016/j.epsl.2014.02.03110.1016/j.epsl.2014.02.031Search in Google Scholar

Hartley, M.E., Neave, D.A., Maclennan, J., Edmonds, M., and Thordarson, T. (2015) Diffusive over-hydration of olivine-hosted melt inclusions. Earth and Planetary Science Letters, 425, 168–178. DOI: 10.1016/j.epsl.2015.06.00810.1016/j.epsl.2015.06.008Search in Google Scholar

Hauri, E. (2002) SIMS analysis of volatiles in silicate glasses, 2: Isotopes and abundances in Hawaiian melt inclusions. Chemical Geology, 183(1–4), 115–141.10.1016/S0009-2541(01)00374-6Search in Google Scholar

Hauri, E., Wang, J., Dixon, J.E., King, P.L., Mandeville, C., and Newman, S. (2002) SIMS analysis of volatiles in silicate glasses: 1. Calibration, matrix effects and comparisons with FTIR. Chemical Geology, 183(1), 99–114.10.1016/S0009-2541(01)00375-8Search in Google Scholar

Herzberg, C.T., Fyfe, W.S., and Carr, M. J. (1983) Density constraints on the formation of the continental Moho and crust. Contributions to Mineralogy and Petrology, 84(1), 1–5. DOI: 10.1007/bf0113232410.1007/bf01132324Search in Google Scholar

Holtz, F., Sato, H., Lewis, J., Behrens, H., and Nakada, S. (2005) Experimental petrology of the 1991–1995 Unzen dacite, Japan. Part I: Phase relations, phase composition and pre-eruptive conditions. Journal of Petrology, 46(2), 319–337.10.1093/petrology/egh077Search in Google Scholar

Hughes, E.C., Buse, B., Kearns, S.L., Blundy, J.D., Kilgour, G., and Mader, H.M. (2019) Low analytical totals in EPMA of hydrous silicate glass due to sub-surface charging: Obtaining accurate volatiles by difference. Chemical Geology, 505, 48–56.10.1016/j.chemgeo.2018.11.015Search in Google Scholar

Humphreys, M.C.S., Kearns, S.L., and Blundy, J.D. (2006) SIMS investigation of electron-beam damage to hydrous, rhyolitic glasses: Implications for melt inclusion analysis. American Mineralogist, 91, 667–679. DOI: 10.2138/am.2006.193610.2138/am.2006.1936Search in Google Scholar

Humphreys, M.C.S., Menand, T., Blundy, J.D., and Klimm, K. (2008) Magma ascent rates in explosive eruptions: Constraints from H2O diffusion in melt inclusions. Earth and Planetary Science Letters, 270(1), 25–40. DOI: 10.1016/j.epsl.2008.02.04110.1016/j.epsl.2008.02.041Search in Google Scholar

Ihinger, P.D., Hervig, R.L., and McMillan, P.F. (1994) Analytical methods for volatiles in glasses. Reviews in Mineralogy and Geochemistry, 30, 67–121.Search in Google Scholar

Imae, N., and Ikeda, Y. (2007) Petrology of the Miller Range 03346 nakhlite in comparison with the Yamato-000593 nakhlite. Meteoritics & Planetary Science, 42(2), 171–184. DOI: 10.1111/j.1945-5100.2007.tb00225.x10.1111/j.1945-5100.2007.tb00225.xSearch in Google Scholar

Ionov, D.A. (2010) Petrology of mantle wedge lithosphere: New data on supra-subduction zone peridotite xenoliths from the Andesitic Avacha Volcano, Kamchatka. Journal of Petrology, 51(1-2), 327–361. DOI: 10.1093/petrology/egp09010.1093/petrology/egp090Search in Google Scholar

Johnson, E.R., Wallace, P.J., Cashman, K.V., Granados, H.D., and Kent, A.J.R. (2008) Magmatic volatile contents and degassing-induced crystallization at Volcán Jorullo, Mexico: Implications for melt evolution and the plumbing systems of monogenetic volcanoes. Earth and Planetary Science Letters, 269(3–4), 478–487.10.1016/j.epsl.2008.03.004Search in Google Scholar

Kamenetsky, V.S., Crawford, A.J., Eggins, S., and Mühe, R. (1997) Phenocryst and melt inclusion chemistry of near-axis seamounts, Valu Fa Ridge, Lau Basin: insight into mantle wedge melting and the addition of subduction components. Earth and Planetary Science Letters, 151(3), 205–223. DOI: 10.1016/S0012-821X(97)81849-310.1016/S0012-821X(97)81849-3Search in Google Scholar

Kamenetsky, V.S., Sobolev, A.V., Eggins, S.M., Crawford, A.J., and Arculus, R.J. (2002) Olivine-enriched melt inclusions in chromites from low-Ca boninites, Cape Vogel, Papua New Guinea: evidence for ultramafic primary magma, refractory mantle source and enriched components. Chemical Geology, 183(1), 287–303.10.1016/S0009-2541(01)00380-1Search in Google Scholar

Katz, R.F., Spiegelman, M., and Langmuir, C.H. (2003) A new parameterization of hydrous mantle melting. Geochemistry, Geophysics, Geosystems, 4(9), 1073.10.1029/2002GC000433Search in Google Scholar

Kayzar, T.M., Nelson, B.K., Bachmann, O., Bauer, A.M., and Izbekov, P.E. (2014) Deciphering petrogenic processes using Pb isotope ratios from time-series samples at Bezymianny and Klyuchevskoy volcanoes, Central Kamchatka Depression. Contributions to Mineralogy and Petrology, 168, 1067. DOI: 10.1007/s00410-014-1067-610.1007/s00410-014-1067-6Search in Google Scholar

Kent, A.J.R. (2008) Melt inclusions in basaltic and related volcanic rocks. Reviews in Mineralogy and Geochemistry, 69, 273–331. DOI: 10.2138/rmg.2008.69.810.2138/rmg.2008.69.8Search in Google Scholar

King, P.L., Vennemann, T.W., Holloway, J.R., Hervig, R.L., Lowenstern, J.B., and Forneris, J.F. (2002) Analytical techniques for volatiles: A case study using intermediate (andesitic) glasses. American Mineralogist, 87, 1077–1089.10.2138/am-2002-8-904Search in Google Scholar

Knowlton, G.D., White, T.R., and McKague, H.L. (1981) Thermal study of types of water associated with clinoptilolite. Clays & Clay Minerals, 29(5), 403–411.10.1346/CCMN.1981.0290510Search in Google Scholar

Kohn, S.C., Henderson, C.M.B., and Mason, R.A. (1989) Element zoning trends in olivine phenocrysts from a supposed primary high-magnesian andesite: an electron- and ion-microprobe study. Contributions to Mineralogy and Petrology, 103(2), 242–252. DOI: 10.1007/bf0037851010.1007/bf00378510Search in Google Scholar

Krawczynski, M.J., and Olive, J.L. (2011) A new fitting algorithm for petrological mass-balance problems. 2011 Fall Meeting, AGU, San Francisco, Calif., 5-9 Dec, Abstract V53B-2613.Search in Google Scholar

Krawczynski, M.J., Grove, T.L., and Behrens, H. (2012) Amphibole stability in primitive arc magmas: effects of temperature, H2O content, and oxygen fugacity. Contributions to Mineralogy and Petrology, 164(2), 317–339. DOI: 10.1007/s00410-012-0740-x10.1007/s00410-012-0740-xSearch in Google Scholar

Kumamoto, K.M., Warren, J.M., and Hauri, E.H. (2017) New SIMS reference materials for measuring water in upper mantle minerals. American Mineralogist, 102, 537–547. DOI: 10.2138/am-2017-5863CCBYNCND10.2138/am-2017-5863CCBYNCNDSearch in Google Scholar

Lees, J.M., Symons, N., Chubarova, O., Gorelchik, V., and Ozerov, A. (2007) Tomographic images of Klyuchevskoy Volcano P-wave velocity. In J. Eichelberger, E. Gordeev, P. Izbekov, M. Kasahara, and J. Lees, Eds., Volcanism and Subduction: The Kamchatka Region, 172, p. 293–302. American Geophysical Union.10.1029/172GM21Search in Google Scholar

Levin, V., Droznina, S., Gavrilenko, M., Carr, M.J., and Senyukov, S. (2014) Seismically active subcrustal magma source of the Klyuchevskoy volcano in Kamchatka, Russia. Geology, 42(11), 983–986. DOI: 10.1130/g35972.110.1130/g35972.1Search in Google Scholar

Lloyd, A., Plank, T., Ruprecht, P., Hauri, E., and Rose, W. (2013) Volatile loss from melt inclusions in pyroclasts of differing sizes. Contributions to Mineralogy and Petrology, 165(1), 129–153. DOI: 10.1007/s00410-012-0800-210.1007/s00410-012-0800-2Search in Google Scholar

Lloyd, A. S., Ruprecht, P., Hauri, E.H., Rose, W., Gonnermann, H.M., and Plank, T. (2014) NanoSIMS results from olivine-hosted melt embayments: Magma ascent rate during explosive basaltic eruptions. Journal of Volcanology and Geothermal Research, 283, 1–18. DOI: 10.1016/j.jvolgeores.2014.06.00210.1016/j.jvolgeores.2014.06.002Search in Google Scholar

Maclennan, J. (2017) Bubble formation and decrepitation control the CO2 content of olivine-hosted melt inclusions. Geochemistry, Geophysics, Geosystems, 18(2), 597–616. DOI: 10.1002/2016GC00663310.1002/2016GC006633Search in Google Scholar

Massare, D., Métrich, N., and Clocchiatti, R. (2002) High-temperature experiments on silicate melt inclusions in olivine at 1 atm: inference on temperatures of homogenization and H2O concentrations. Chemical Geology, 183(1–4), 87–98.10.1016/S0009-2541(01)00373-4Search in Google Scholar

McGary, R.S., Evans, R.L., Wannamaker, P.E., Elsenbeck, J., and Rondenay, S. (2014) Pathway from subducting slab to surface for melt and fluids beneath Mount Rainier. Nature, 511(7509), 338–340. DOI: 10.1038/nature1349310.1038/nature13493Search in Google Scholar PubMed

McMillan, P.F. (1994) Water solubility and speciation models. Reviews in Mineralogy and Geochemistry, 30, 132–156.Search in Google Scholar

Métrich, N., and Wallace, P.J. (2008) Volatile abundances in basaltic magmas and their degassing paths tracked by melt inclusions. Reviews in Mineralogy and Geochemistry, 69, 363–402. DOI: 10.2138/rmg.2008.69.1010.2138/rmg.2008.69.10Search in Google Scholar

Métrich, N., Allard, P., Spilliaert, N., Andronico, D., and Burton, M. (2004) 2001 flank eruption of the alkali- and volatile-rich primitive basalt responsible for Mount Etna’s evolution in the last three decades. Earth and Planetary Science Letters, 228(1), 1–17. DOI: 10.1016/j.epsl.2004.09.03610.1016/j.epsl.2004.09.036Search in Google Scholar

Mielenz, R.C., Schieltz, N.C., and King, M.E. (1953) Thermogravimetric analysis of clay and clay-like minerals. Clays and Clay Minerals, 285–314.10.1346/CCMN.1953.0020124Search in Google Scholar

Mironov, N.L., and Portnyagin, M.V. (2011) H2O and CO2 in parental magmas of Kliuchevskoi volcano inferred from study of melt and fluid inclusions in olivine. Russian Geology and Geophysics, 52(11), 1353–1367. DOI: 10.1016/j.rgg.2011.10.00710.1016/j.rgg.2011.10.007Search in Google Scholar

Mironov, N., Portnyagin, M., Botcharnikov, R., Gurenko, A., Hoernle, K., and Holtz, F. (2015) Quantification of the CO2 budget and H2O–CO2 systematics in subduction-zone magmas through the experimental hydration of melt inclusions in olivine at high H2O pressure. Earth and Planetary Science Letters, 425, 1–11.10.1016/j.epsl.2015.05.043Search in Google Scholar

Mitchell, A.L., Gaetani, G.A., O’Leary, J.A., and Hauri, E.H. (2017) H2O solubility in basalt at upper mantle conditions. Contributions to Mineralogy and Petrology, 172(10), 85. DOI: 10.1007/s00410-017-1401-x10.1007/s00410-017-1401-xSearch in Google Scholar

Moore, G. (2008) Interpreting H2O and CO2 contents in melt inclusions: Constraints from solubility experiments and modeling. Reviews in Mineralogy and Geochemistry, 69, 333–362. DOI: 10.2138/rmg.2008.69.910.2138/rmg.2008.69.9Search in Google Scholar

Moore, D., and Reynolds, R. Jr. (1997) X-ray Diffraction and the Identification and Analysis of Clay Minerals, 378 p. Oxford University Press.Search in Google Scholar

Moore, G., Vennemann, T., and Carmichael, I.S.E. (1998) An empirical model for the solubility of H2O in magmas to 3 kilobars. American Mineralogist, 83, 36–42.10.2138/am-1998-1-203Search in Google Scholar

Moore, L.R., Gazel, E., Tuohy, R., Lloyd, A.S., Esposito, R., Steele-MacInnis, M., Hauri, E.H., Wallace, P.J., Plank, T., and Bodnar, R.J. (2015) Bubbles matter: An assessment of the contribution of vapor bubbles to melt inclusion volatile budgets. American Mineralogist, 100(4), 806–823. DOI: 10.2138/am-2015–5036.10.2138/am-2015–5036Search in Google Scholar

Mysen, B. (2014) Water-melt interaction in hydrous magmatic systems at high temperature and pressure. Progress in Earth and Planetary Science, 1(1), 4.10.1186/2197-4284-1-4Search in Google Scholar

Nash, W.P. (1992) Analysis of oxygen with the electron microprobe: Applications to hydrated glass and minerals. American Mineralogist, 77, 453–457.Search in Google Scholar

Nowak, M., and Behrens, H. (1995) The speciation of water in haplogranitic glasses and melts determined by in situ near-infrared spectroscopy. Geochimica et Cosmochimica Acta, 59(16), 3445–3450. DOI: 10.1016/0016-7037(95)00237-T10.1016/0016-7037(95)00237-TSearch in Google Scholar

Nye, C.J., and Reid, M.R. (1986) Geochemistry of primary and least fractionated lavas from Okmok volcano, Central Aleutians: implications for arc magmagenesis. Journal of Geophysical Research, 91 (B10), 10271–10287. DOI: 10.1029/JB091iB10p1027110.1029/JB091iB10p10271Search in Google Scholar

Ochs, F.A., and Lange, R.A. (1999) The density of hydrous magmatic liquids. Science, 283(5406), 1314–1317. DOI: 10.1126/science.283.5406.131410.1126/science.283.5406.1314Search in Google Scholar

Ozerov, A.Y. (2000) The evolution of high-alumina basalts of the Klyuchevskoy volcano, Kamchatka, Russia, based on microprobe analyses of mineral inclusions. Journal of Volcanology and Geothermal Research, 95(1–4), 65–79.10.1016/S0377-0273(99)00118-3Search in Google Scholar

Ozerov, A.Y. (2009) Experimental modeling of the explosion mechanism of basaltic magmas. Petrology, 17(7), 653–668. DOI: 10.1134/s086959110907002910.1134/s0869591109070029Search in Google Scholar

Ozerov, A.Y., Ariskin, A.A., Kyle, P., Bogoyavlenskaya, G.E., and Karpenko, S.F. (1997) Petrological-geochemical model for genetic relationships between basaltic and andesitic magmatism of Klyuchevskoi and Bezymyannyi volcanoes, Kamchatka. Petrology, 5(6), 550–569.Search in Google Scholar

Paonita, A. (2005) Noble gas solubility in silicate melts:a review of experimentation and theory, and implications regarding magma degassing processes. Annals of Geophysics, 48(4-5), 647–669. DOI: 10.4401/ag-322510.4401/ag-3225Search in Google Scholar

Papale, P., Moretti, R., and Barbato, D. (2006) The compositional dependence of the saturation surface of H2O+CO2 fluids in silicate melts. Chemical Geology, 229(1), 78–95. DOI: 10.1016/j.chemgeo.2006.01.01310.1016/j.chemgeo.2006.01.013Search in Google Scholar

Parai, R., and Mukhopadhyay, S. (2012) How large is the subducted water flux? New constraints on mantle regassing rates. Earth and Planetary Science Letters, 317-318, 396–406. DOI: 10.1016/j.epsl.2011.11.02410.1016/j.epsl.2011.11.024Search in Google Scholar

Peslier, A.H., Schönbächler, M., Busemann, H., and Karato, S.-I. (2017) Water in the Earth’s interior: distribution and origin. Space Science Reviews, 212(1), 743–810.10.1007/978-94-024-1628-2_4Search in Google Scholar

Petrelli, M., El Omari, K., Spina, L., Le Guer, Y., La Spina, G., and Perugini, D. (2018) Timescales of water accumulation in magmas and implications for short warning times of explosive eruptions. Nature Communications, 9(1), 770.10.1038/s41467-018-02987-6Search in Google Scholar PubMed PubMed Central

Plank, T., Kelley, K.A., Zimmer, M.M., Hauri, E.H., and Wallace, P.J. (2013) Why do mafic arc magmas contain ~4 wt% water on average? Earth and Planetary Science Letters, 364, 168–179. DOI: 10.1016/j.epsl.2012.11.04410.1016/j.epsl.2012.11.044Search in Google Scholar

Portnyagin, M., Hoernle, K., Plechov, P., Mironov, N., and Khubunaya, S. (2007) Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka Arc. Earth and Planetary Science Letters, 255(1–2), 53–69.10.1016/j.epsl.2006.12.005Search in Google Scholar

Portnyagin, M., Almeev, R., Matveev, S., and Holtz, F. (2008) Experimental evidence for rapid water exchange between melt inclusions in olivine and host magma. Earth and Planetary Science Letters, 272(3–4), 541–552. DOI: 10.1016/j.epsl.2008.05.02010.1016/j.epsl.2008.05.020Search in Google Scholar

Pozgay, S.H., Wiens, D.A., Conder, J.A., Shiobara, H., and Sugioka, H. (2009) Seismic attenuation tomography of the Mariana subduction system: Implications for thermal structure, volatile distribution, and slow spreading dynamics. Geochemistry, Geophysics, Geosystems, 10(4), Q04X05. DOI: 10.1029/2008GC00231310.1029/2008GC002313Search in Google Scholar

Qin, Z., Lu, F., and Anderson, A.T. (1992) Diffusive reequilibration of melt and fluid inclusions. American Mineralogist, 77, 565–576.Search in Google Scholar

Rivalta, E., Taisne, B., Bunger, A.P., and Katz, R.F. (2015) A review of mechanical models of dike propagation: Schools of thought, results and future directions. Tectonophysics, 638, 1–42. DOI: 10.1016/j.tecto.2014.10.00310.1016/j.tecto.2014.10.003Search in Google Scholar

Rubin, A.M. (1993) Tensile fracture of rock at high confining pressure: Implications for dike propagation. Journal of Geophysical Research: Solid Earth, 98(B9), 15,919–15,935. DOI: 10.1029/93JB0139110.1029/93JB01391Search in Google Scholar

Ruprecht, P., and Plank, T. (2013) Feeding andesitic eruptions with a high-speed connection from the mantle. Nature, 500, 68–72. DOI: 10.1038/nature1234210.1038/nature12342Search in Google Scholar PubMed

Ruscitto, D.M., Wallace, P.J., and Kent, A.J.R. (2011) Revisiting the compositions and volatile contents of olivine-hosted melt inclusions from the Mount Shasta region: implications for the formation of high-Mg andesites. Contributions to Mineralogy and Petrology, 162(1), 109–132. DOI: 10.1007/s00410-010-0587-y10.1007/s00410-010-0587-ySearch in Google Scholar

Rutherford, M.J., and Devine, J.D. (1996) Preeruption pressure-temperature conditions and volatiles in the 1991 dacitic magma of Mount Pinatubo. Fire and mud: eruptions and lahars of Mt. Pinatubo, Philippines, p. 751–766. U.S. Geological Survey.Search in Google Scholar

Schiano, P. (2003) Primitive mantle magmas recorded as silicate melt inclusions in igneous minerals. Earth-Science Reviews, 63(1), 121–144.10.1016/S0012-8252(03)00034-5Search in Google Scholar

Schiano, P., and Bourdon, B. (1999) On the preservation of mantle information in ultramafic nodules: glass inclusions within minerals versus interstitial glasses. Earth and Planetary Science Letters, 169(1), 173–188. DOI: 10.1016/S0012-821X(99)00074-610.1016/S0012-821X(99)00074-6Search in Google Scholar

Shishkina, T.A. (2012) Storage conditions and degassing processes of low-K and high-Al tholeiitic island-arc magmas: experimental constraints and natural observations for Mutnovsky volcano, Kamchatka. Naturwissenschaftliche Fakultät, Ph.D. thesis, 214 p. Leibniz Universität Hannover, Germany.Search in Google Scholar

Shishkina, T.A., Botcharnikov, R.E., Holtz, F., Almeev, R.R., and Portnyagin, M.V. (2010) Solubility of H2O- and CO2-bearing fluids in tholeiitic basalts at pressures up to 500 MPa. Chemical Geology, 277(1–2), 115–125.10.1016/j.chemgeo.2010.07.014Search in Google Scholar

Shishkina, T.A., Botcharnikov, R.E., Holtz, F., Almeev, R.R., Jazwa, A.M., and Jakubiak, A.A. (2014) Compositional and pressure effects on the solubility of H2O and CO2 in mafic melts. Chemical Geology, 388, 112–129.10.1016/j.chemgeo.2014.09.001Search in Google Scholar

Silver, L., and Stolper, E. (1989) Water in Albitic Glasses. Journal of Petrology, 30(3), 667–709. DOI: 10.1093/petrology/30.3.66710.1093/petrology/30.3.667Search in Google Scholar

Skirius, C.M., Peterson, J.W., and Anderson, A.T. (1990) Homogenizing rhyolitic glass inclusions from the Bishop Tuff. American Mineralogist, 75, 1381–1398.Search in Google Scholar

Sobolev, A.V., and Chaussidon, M. (1996) H2O concentrations in primary melts from supra-subduction zones and mid-ocean ridges: Implications for H2O storage and recycling in the mantle. Earth and Planetary Science Letters, 137(1), 45–55.10.1016/0012-821X(95)00203-OSearch in Google Scholar

Sommer, M.A. (1977) Volatiles H2O, CO2 and CO in silicate melt inclusions in quartz phenocrysts from the Rhyolitic Bandelier Air-Fall and Ash-Flow Tuff, New Mexico. The Journal of Geology, 85(4), 423–432. DOI: 10.1086/62831610.1086/628316Search in Google Scholar

Steele-Macinnis, M., Esposito, R., and Bodnar, R.J. (2011) Thermodynamic model for the effect of post-entrapment crystallization on the H2O–CO2 systematics of vapor-saturated, silicate melt inclusions. Journal of Petrology, 52(12), 2461–2482.10.1093/petrology/egr052Search in Google Scholar

Steele-MacInnis, M., Esposito, R., Moore, L.R., and Hartley, M.E. (2017) Heterogeneously entrapped, vapor-rich melt inclusions record pre-eruptive magmatic volatile contents. Contributions to Mineralogy and Petrology, 172(4), 18.10.1007/s00410-017-1343-3Search in Google Scholar

Stolper, E. (1982a) The speciation of water in silicate melts. Geochimica et Cosmochimica Acta, 46(12), 2609–2620. DOI: 10.1016/0016-7037(82)90381-710.1016/0016-7037(82)90381-7Search in Google Scholar

Stolper, E. (1982b) Water in silicate glasses: An infrared spectroscopic study. Contributions to Mineralogy and Petrology, 81(1), 1–17. DOI: 10.1007/bf0037115410.1007/bf00371154Search in Google Scholar

Straub, S.M., and Layne, G.D. (2003) The systematics of chlorine, fluorine, and water in Izu arc front volcanic rocks: Implications for volatile recycling in subduction zones. Geochimica et Cosmochimica Acta, 67(21), 4179–4203.10.1016/S0016-7037(03)00307-7Search in Google Scholar

Straub, S.M., LaGatta, A.B., Martin-Del Pozzo, A.L., and Langmuir, C.H. (2008) Evidence from high-Ni olivines for a hybridized peridotite/pyroxenite source for orogenic andesites from the central Mexican Volcanic Belt. Geochemistry, Geophysics, Geosystems, 9(3), Q03007. DOI: 10.1029/2007GC00158310.1029/2007GC001583Search in Google Scholar

Streck, M.J., and Leeman, W.P. (2018) Petrology of “Mt. Shasta” high-magnesian andesite (HMA): A product of multi-stage crustal assembly. American Mineralogist, 103(2), 216–240. DOI: 10.2138/am-2018-615110.2138/am-2018-6151Search in Google Scholar

Stroncik, N.A., and Schmincke, H.-U. (2002) Palagonite—a review. International Journal of Earth Sciences, 91(4), 680–697. DOI: 10.1007/s00531-001-0238-710.1007/s00531-001-0238-7Search in Google Scholar

Taisne, B., and Jaupart, C. (2011) Magma expansion and fragmentation in a propagating dyke. Earth and Planetary Science Letters, 301(1), 146–152.10.1016/j.epsl.2010.10.038Search in Google Scholar

Tolstykh, M.L., Naumov, V.B., Gavrilenko, M.G., Ozerov, A.Y., and Kononkova, N.N. (2012) Chemical composition, volatile components, and trace elements in the melts of the Gorely volcanic center, southern Kamchatka: Evidence from inclusions in minerals. Geochemistry International, 50(6), 522–550.10.1134/S0016702912060079Search in Google Scholar

van Keken, P.E., Hacker, B.R., Syracuse, E.M., and Abers, G.A. (2011) Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. Journal of Geophysical Research: Solid Earth, 116(B1). DOI: 10.1029/2010JB00792210.1029/2010JB007922Search in Google Scholar

Wallace, P.J. (2005) Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. Journal of Volcanology and Geothermal Research, 140(1–3), 217–240. DOI: 10.1016/j.jvolgeores.2004.07.02310.1016/j.jvolgeores.2004.07.023Search in Google Scholar

Wallace, P.J., Kamenetsky, V.S., and Cervantes, P. (2015a) Melt inclusion CO2 contents, pressures of olivine crystallization, and the problem of shrinkage bubbles. American Mineralogist, 100, 787–794. DOI: 10.2138/am-2015-502910.2138/am-2015-5029Search in Google Scholar

Wallace, P.J., Plank, T., Edmonds, M., and Hauri, E.H. (2015b) Chapter 7—Volatiles in Magmas. In H. Sigurdsson, Ed., The Encyclopedia of Volcanoes (2nd ed.), p. 163–183. Academic Press, Amsterdam.10.1016/B978-0-12-385938-9.00007-9Search in Google Scholar

Walowski, K. (2015) From cinder cones to subduction zones: Volatile recycling and magma formation beneath the Southern Cascade Arc, p. 169. Ph.D. thesis, University of Oregon, Eugene, Oregon.Search in Google Scholar

Wanamaker, B.J., Wong, T.-F., and Evans, B. (1990) Decrepitation and crack healing of fluid inclusions in San Carlos olivine. Journal of Geophysical Research: Solid Earth, 95(B10), 15,623–15,641. DOI: 10.1029/JB095iB10p1562310.1029/JB095iB10p15623Search in Google Scholar

Weller, D.J., and Stern, C.R. (2018) Along-strike variability of primitive magmas (major and volatile elements) inferred from olivine-hosted melt inclusions, southernmost Andean Southern Volcanic Zone, Chile. Lithos, 296-299, 233–244.10.1016/j.lithos.2017.11.009Search in Google Scholar

Zellmer, G.F., Edmonds, M., and Straub, S.M. (2015) Volatiles in subduction zone magmatism. Geological Society, London, Special Publications, 410(1), 1–17.10.1144/SP410.13Search in Google Scholar

Zellmer, G.F., Pistone, M., Iizuka, Y., Andrews, B.J., Gómez-Tuena, A., Straub, S.M.,and Cottrell, E. (2016) Petrogenesis of antecryst-bearing arc basalts from the Trans-Mexican Volcanic Belt: Insights into along-arc variations in magma-mush ponding depths, H2O contents, and surface heat flux. American Mineralogist, 101, 2405–2422. DOI: 10.2138/am-2016-570110.2138/am-2016-5701Search in Google Scholar

Zhang, Y. (1998) Mechanical and phase equilibria in inclusion–host systems. Earth and Planetary Science Letters, 157(3), 209–222. DOI: 10.1016/S0012-821X(98)00036-310.1016/S0012-821X(98)00036-3Search in Google Scholar

Zhang, H.L., Hirschmann, M.M., Cottrell, E., and Withers, A.C. (2017) Effect of pressure on Fe3+/SFe ratio in a mafic magma and consequences for magma ocean redox gradients. Geochimica et Cosmochimica Acta, 204, 83–103.10.1016/j.gca.2017.01.023Search in Google Scholar

Zimmer, M.M., Plank, T., Hauri, E.H., Yogodzinski, G.M., Stelling, P., Larsen, J., Singer, B., Jicha, B., Mandeville, C., and Nye, C.J. (2010) The role of water in generating the calc-alkaline trend: New Volatile data for Aleutian magmas and a new tholeiitic index. Journal of Petrology, 51(12), 2411–2444. DOI: 10.1093/petrology/egq06210.1093/petrology/egq062Search in Google Scholar

Received: 2018-07-16
Accepted: 2019-04-09
Published Online: 2019-06-20
Published in Print: 2019-07-26

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Scroll Up Arrow