Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 2, 2020

Volcanic SiO2-cristobalite: A natural product of chemical vapor deposition

C. Ian Schipper ORCID logo, William D.A. Rickard, Steven M. Reddy ORCID logo, David W. Saxey, Jonathan M. Castro, Denis Fougerouse, Zakaria Quadir, Chris Conway, David J. Prior and Kat Lilly
From the journal American Mineralogist


Cristobalite is a low-pressure, high-temperature SiO2 polymorph that occurs as a metastable phase in many geologic settings, including as crystals deposited from vapor within the pores of volcanic rocks. Such vapor-phase cristobalite (VPC) has been inferred to result from silica redistribution by acidic volcanic gases but a precise mechanism for its formation has not been established. We address this by investigating the composition and structure of VPC deposited on plagioclase substrates within a rhyolite lava flow, at the micrometer to nanometer scale. The VPC contains impurities of the form [AlO4/Na+]0—coupled substitution of Al3+ charge-balanced by interstitial Na+—which are typical of cristobalite. However, new electron probe microanalysis (EPMA) element maps show individual crystals to have impurity concentrations that systematically decline from crystal cores-to-rims, and atom probe tomography reveals localized segregation of impurities to dislocations. Impurity concentrations are inversely correlated with degrees of crystallinity [observed by electron backscatter diffraction (EBSD), hyperspectral cathodoluminescence, laser Raman, and transmission electron microscopy (TEM)], such that crystal cores are poorly crystalline and rims are highly ordered tetragonal α-cristobalite. The VPC-plagioclase interfaces show evidence that dissolution-reprecipitation reactions between acidic gases and plagioclase crystals yield precursory amorphous SiO2 coatings that are suitable substrates for initial deposition of impure cristobalite. Successive layers of cubic β-cristobalite are deposited with impurity concentrations that decline as Al-bearing gases rapidly become unstable in the vapor cooling within pores. Final cooling to ambient temperature causes a displacive transformation from β→α cristobalite, but with locally expanded unit cells where impurities are abundant. We interpret this mechanism of VPC deposition to be a natural proxy for dopant-modulated Chemical Vapor Deposition, where halogen-rich acidic gases uptake silica, react with plagioclase surfaces to form suitable substrates and then deposit SiO2 as impure cristobalite. Our results have implications for volcanic hazards, as it has been established that the toxicity of crystalline silica is positively correlated with its purity. Furthermore, we note that VPC commonly goes unreported, but has been observed in silicic lavas of virtually all compositions and eruptive settings. We therefore suggest that despite being metastable at Earth’s surface, cristobalite may be the most widely occurring SiO2 polymorph in extrusive volcanic rocks and a useful indicator of gas-solid reaction having occurred in cooling magma bodies.

  1. Funding

    C.I.S. acknowledges a Faculty Strategic Research Grant from Victoria University of Wellington.

References cited

Aiuppa, A., Baker, D.R., and Webster, J.D. (2009) Halogens in volcanic systems. Chemical Geology, 263, 1–18. doi:10.1016/j.chemgeo.2008. in Google Scholar

Balcone-Boissard, H., Villemant, B., and Boudon, G. (2010) Behaviour of halogens during the degassing of felsic magmas. Geochemistry, Geophysics, Geosystems, 11, Q09005. doi:10.1029/2010GC003028.10.1029/2010GC003028Search in Google Scholar

Bates, J.B. (1972) Raman spectra of α and β cristobalite. Journal of Chemical Physics, 57, 4042–4047. doi:10.1063/1.1678878.10.1063/1.1678878Search in Google Scholar

Baxter, P.J., Bonadonna, C., Dupree, R., Hards, V.L., Kohn, S.C., Murphy, M.D., Nichols, A., Nicholson, R.A., Norton, G.E., Searl, A., Sparks, R.S.J., and Vickers, B.P. (1999) Cristobalite in volcanic ash of the Soufriere Hills Volcano, Montserrat, British West Indies. Science, 283, 1142–1145.10.1126/science.283.5405.1142Search in Google Scholar PubMed

Blavette, D., Cadel, E., Cojocaru-Mirédin, O., and Deconihout, B. (2010) The investigation of boron-doped silicon using atom probe tomography. IOP Conference Series: Materials Science and Engineering, 7, 012004. doi:10.1088/1757-899X/7/1/012004.10.1088/1757-899X/7/1/012004Search in Google Scholar

Blavette, D., Cadel, E., Fraczkiewicz, A., and Menard, A. (1999) Three-dimensional atomic-scale imaging of impurity segregation to line defects. Science, 286, 2317–2319. doi:10.1126/science.286.5448.2317.10.1126/science.286.5448.2317Search in Google Scholar PubMed

Boudon, G., Balcone-Boissard, H., Villemant, B., and Morgan, D.J. (2015) What factors control superficial lava dome explosivity? Scientific Reports, 5, 14551. doi:10.1038/srep14551.10.1038/srep14551Search in Google Scholar PubMed PubMed Central

Bowen, N.L. (1928) The Evolution of the Igneous Rocks. Princeton University Press, New Jersey.Search in Google Scholar

Buerger, M.J. (1954) The stuffed derivatives of the silica structures. American Mineralogist, 39, 600–614.Search in Google Scholar

Carlsson, J.-O., and Martin, P.M. (2010) Chemical vapor deposition. In P.M. Martin, Ed., Handbook of Deposition Technologies for Films and Coatings, p. 314–363. Elsevier, Amsterdam.10.1016/B978-0-8155-2031-3.00007-7Search in Google Scholar

Castro, J.M., Schipper, C.I., Amigo, A., Silva Parejas, C., Mueller, S., Jacob, D., and Militzer, A.S. (2013) Storage and eruption of near-liquidus rhyolite magma at Cordón Caulle, Chile. Bulletin of Volcanology, 75, 702. doi:10.1007/ s00445-013-0702-9.10.1007/s00445-013-0702-9Search in Google Scholar

Chao, C.-H., and Lu, H.-Y. (2002a) β-cristobalite stabilization in (Na2O + Al2O3added silica. Metallurgical and Materials Transactions A, 33A, 2703–2711.10.1007/s11661-002-0392-ySearch in Google Scholar

Chao, C.-H., and Lu, H.-Y. (2002b) Stress-induced β→α-cristobalite phase transformation in (Na2O+Al2O3-codoped silica. Materials Science and Engineering A, 328, 267–276.10.1016/S0921-5093(01)01703-8Search in Google Scholar

Christie, J.M., Lally, J.S., Heuer, A.H., Fisher, R.M., Griggs, D.T., and Radcliffe, S.V. (1971) Comparative electron petrography of Apollo 11, Apollo 12, and terrestrial rocks. Proceedings of the Second Lunar Science Conference, 1, 69–89.Search in Google Scholar

Churakov, S.V., Tkachenko, S.I., Korzhinskii, M.A., Bocharnikov, R.E., and Schmulovich, K.I. (2000) Evolution of composition of high-temperature fumarolic gases from Kudryavy Volcano, Iturup, Kuril Islands: the thermodynamic modeling. Geochemistry International, 38, 436–451.Search in Google Scholar

Cole, J.W. (1978) Andesites of the Tongariro Volcanic Centre, North Island, New Zealand. Journal of Volcanology and Geothermal Research, 3, 121–153.10.1016/0377-0273(78)90007-0Search in Google Scholar

Conway, C.E. (2016) Studies on the glaciovolcanic and magmatic evolution of Ruapehu Volcano, New Zealand. Ph.D. thesis, Victoria University of Wellington.Search in Google Scholar

Damby, D.E. (2012) From dome to disease: The respiratory toxicity of volcanic cristobalite. PhD thesis, Durham University, U.K.Search in Google Scholar

Damby, D.E., Llewellin, E.W., Horwell, C.J., Williamson, B.J., Najorka, J., Cressey, G., and Carpenter, M. (2014) The α-β phase transition in volcanic cristobalite. Journal of Applied Crystallography, 47, 1205–1215. doi:10.1107/ S160057671401070X10.1107/S160057671401070XSearch in Google Scholar PubMed PubMed Central

Damby, D.E., Murphy, F.A., Horwell, C.J., Raftis, J., and Donaldson, K. (2016) The in vitro respiratory toxicity of cristobalite-bearing volcanic ash. Environmental Research, 145, 74–84. doi:10.1016/j.envres.2015. in Google Scholar PubMed

de Hoog, J.C.M., van Bergen, M.J., and Jacobs, M.H.G. (2005) Vapour-phase crystallisation of silica from SiF4-bearing volcanic gases. Annals of Geophysics, 48, 775–785.Search in Google Scholar

Deer, W.A., Howie, R.A., and Zussman, J. (1992) An Introduction to the Rock-Forming Minerals, 2nd edition. Wiley, New York.Search in Google Scholar

Downs, R.T., and Palmer, D.C. (1994) The pressure behavior of α cristobalite. American Mineralogist, 79, 9–14.Search in Google Scholar

Eckert, J., Gourdon, O., Jacob, D.E., Meral, C., Monteiro, P.J.M., Vogel, S.C., Wirth, R., and Wenk, H.-R. (2015) Odering of water in opals with different microstructures. European Journal of Mineralogy, 27, 203–213.10.1127/ejm/2015/0027-2428Search in Google Scholar

Foggiato, J. (2001) Chemical vapor deposition of silicon dioxide films. In K. Seshan, Ed., Handbook of Thin Film Deposition Processes and Techniques, 2nd edition, p. 111–150. Elsevier, Amsterdam.10.1016/B978-081551442-8.50008-0Search in Google Scholar

Fougerouse, D., Reddy, S.M., Kirkland, C.L., Saxey, D.W., Rickard, W.D.A., and Hough, R.M. (2019) Time-resolved, defect-hosted, trace element mobility in deformed Witwatersrand pyrite. Geoscience Frontiers, 10, 55–63. doi:10.1016/j.gsf.2018. in Google Scholar

Fougerouse, D., Reddy, S.M., Saxey, D.W., Rickard, W.D.A., van Riessen, A., and Micklethwaite, S. (2016) Nanoscale gold clusters in arsenopyrite controlled by growth rate not concentration: Evidence from atom probe microscopy. American Mineralogist, 101, 1916–1919.10.2138/am-2016-5781CCBYNCNDSearch in Google Scholar

Francois-Saint-Cyr, H.G., Stevie, F.A., McKinley, J.M., Elshot, K., Chow, L., and Trichardson, K.A. (2003) Diffusion of 18 elements implanted into thermally grown SiO2 Journal of Applied Physics, 94, 7433–7439. doi:10.1063/1.1624487.10.1063/1.1624487Search in Google Scholar

Götze, J. (2012) Application of cathodoluminescence microscopy and spectroscopy in geosciences. Microscopy and Microanalysis, 18, 1270–1284. doi:10.1017/ S1431927612001122.10.1017/S1431927612001122Search in Google Scholar PubMed

Gregg, D.R., Grange, L.I., Williamson, J.H., Hurst, J.A., Clark, R.H. and Wilson, S.H. (1960) The geology of Rongariro subdivision. New Zealand Geological Survey, Lower Hutt.Search in Google Scholar

Gualda, G.A.R., and Ghiorso, M.S. (2013) Low-pressure origin of high-silica rhyolites and granites. Journal of Geology, 121, 537–545. doi:10.1086/671395.10.1086/671395Search in Google Scholar

Heaney, P.J. (1994) Structure and chemistry of the low-pressure silica polymorphs. Reviews in Mineralogy, 29, 1–40.Search in Google Scholar

Hellmann, R., Penisson, J.-M., Hervig, R.L., Thomassin, J.-H., and Abrioux, M.-F. (2003) An EFTEM/HRTEM high-resolution study of the near surface of labradorite feldspar altered at acid pH: evidence for interfacial dissolution-reprecipitation. Physics and Chemistry of Minerals, 30, 192–197. doi:10.1007/s00269-003-0308-4.10.1007/s00269-003-0308-4Search in Google Scholar

Hellmann, R., Wirth, R., Daval, D., Barnes, J.-P., Penisson, J.-M., Tisserand, D., Epicier, T., Florin, B., and Hervig, R.L. (2012) Unifying natural and laboratory chemical weathering with interfacial dissolution– reprecipitation: A study based on the nanometer-scale chemistry of fluid–silicate interfaces. Chemical Geology, 294-295, 203–216. doi:10.1016/j.chemgeo.2011. in Google Scholar

Henley, R.W., and Seward, T.M. (2018) Gas-solid reactions in arc volcanoes: Ancient and modern. Reviews in Mineralogy and Geochemistry, 84, 309–349. doi:10.2138/rmg.2018. in Google Scholar

Horwell, C.J., Fenoglio, I., Ragnarsdottir, K.V., Sparks, R.S.J., and Fubini, B. (2003) Surface reactivity of volcanic ash from the eruption of Soufrière Hills volcano, Montserrat, West Indies with implications for health hazards. Environmental Research, 93, 202–215. doi:10.1016/S0013-9351(03)00044-6.10.1016/S0013-9351(03)00044-6Search in Google Scholar

Horwell, C.J., Williamson, B.J., Donaldson, K., Le Blond, J.S., Damby, D.E., and Bowen, L. (2012) The structure of volcanic cristobalite in relation to its toxicity; relevance for the variable crystalline silica hazard. Particle and Fibre Tech, 9, 44.10.1186/1743-8977-9-44Search in Google Scholar PubMed PubMed Central

Horwell, C.J., Williamson, B.J., Llewellin, E.W., Damby, D.E., and Le Blond, J.S. (2013) The nature and formation of cristobalite at the Soufrière Hills volcano, Montserrat: implications for the petrology and stability of silicic lava domes. Bulletin of Volcanology, 75, 696. doi:10.1007/s00445-013-0696-3.10.1007/s00445-013-0696-3Search in Google Scholar

Horwell, C.J., Hillman, S.E., Cole, P.D., Loughlin, S.C., Llewellin, E.W., Damby, D.E., and Christopher, T.E. (2014) Controls on variations in cristobalite abundance in ash generated by the Soufrière Hills Volcano, Montserrat in the period 1997–2010. Geological Society of London Memoirs, 39, 399–406. doi:10.1144/M39.21.10.1144/M39.21Search in Google Scholar

Ikegami, F., McPhie, J., Carey, R., Mundana, R., Soule, A., and Jutzeler, M. (2018) The eruption of submarine rhyolite lavas and domes in the deep ocean— Havre 2012, Kermadec Arc. Frontiers in Earth Science, 6, 147. doi:10.3389/feart.2018.00147.10.3389/feart.2018.00147Search in Google Scholar

Ivanova, D.A., Shcherbakov, V.D., Plechov, P.Y., Nekrylov, N.A., Davydova, V.O., Turova, M.A., and Stepanov, O.V. (2018) Cristobalite in extrusive rocks of Bezymianny volcano. New Data on Minerals, 52, 51–58.Search in Google Scholar

Jewhurst, S.A., Andeen, D., and Lange, F.F. (2005) Chrystal chemistry of the epitaxy of cristobalite (SiO2 on basal plane sapphire. Journal of Crystal Growth, 280, 168–172. doi:10.1016/j.jcrysgro.2005. in Google Scholar

Kayama, M., Nagaoka, H., and Niihara, T. (2018) Lunar and martian silica. Minerals, 8, 267. doi:10.3390/min8070267.10.3390/min8070267Search in Google Scholar

Kayama, M., Nishido, H., and Ninagawa, K. (2009a) Effect of impurities on cathodoluminescence of tridymite and cristobalite. Journal of Physics: Condensed Matter, 104, 401–406.10.2465/jmps.090620aSearch in Google Scholar

Kayama, M., Nishido, H., and Ninagawa, K. (2009b) Cathodoluminescence characterization of tridymite and cristobalite: Effects of electron irradiation and sample temperature. American Mineralogist, 94, 1018–1028. doi:10.2138/am.2009.3133.10.2138/am.2009.3133Search in Google Scholar

Keen, D.A., and Dove, M. T. (1999) Local structures of amorphous and crystalline phases of silica, SiO2 by neutron total scattering. Journal of Physics: Condensed Matter, 11, 9263–9273.10.1088/0953-8984/11/47/311Search in Google Scholar

Kingma, K.J., and Hemley, R.J. (1994) Raman spectroscopic study of microcrystalline silica. American Mineralogist, 79, 269–273.Search in Google Scholar

Kirkland, C.L., Fougerouse, D., Reddy, S.M., Hollis, J., and Saxey, D.W. (2018) Assessing the mechanisms of common Pb incorporation into titanite. Chemical Geology, 483, 558–566. doi:10.1016/j.chemgeo.2018. in Google Scholar

Klaus, J.W., and George, S.M. (2000) SiO2 chemical vapor deposition at room temperature using SiCl4 and H2O with an NH3 catalyst. Journal of the Electrochemical Society, 147, 2658–2664. in Google Scholar

Le Guern, F., and Bernard, A. (1982) A new method for sampling and analyzing volcanic sublimates—Application to Merapi Volcano, Java. Journal of Volcanology and Geothermal Research, 12, 133–146.10.1016/0377-0273(82)90008-7Search in Google Scholar

Lee, M.R., Brown, D.J., Smith, C. L., Hodson, M.E., MacKenzie, M., and Hellmann, R. (2007) Characterization of mineral surfaces using FIB and TEM: A case study of naturally weathered alkali feldspars. American Mineralogist, 92, 1383–1394. doi:10.2138/am.2007.2453.10.2138/am.2007.2453Search in Google Scholar

Liu, J., Wang, Y., and An, L. (2016) Abnormal behavior of silica doped with small amounts of aluminum. Scientific Reports, 6, 35556. doi:10.1038/srep35556.10.1038/srep35556Search in Google Scholar PubMed PubMed Central

Manga, M., Mitchell, S.J., Degruyter, W., and Carey, R.J. (2018) Transition of eruptive style: Pumice raft to dome-forming eruption at the Havre submarine volcano, southwest Pacific Ocean. Geology, 46, 1075–1078. doi:10.1130/G45436.1.10.1130/G45436.1Search in Google Scholar

Miller, M.K. (2006) Atom probe tomography characterization of solute segregation to dislocations. Microscopy Research and Technique, 69, 359–365. doi:10.1002/jemt.20291.10.1002/jemt.20291Search in Google Scholar

Miyahara, M., Kaneko, S., Ohtani, E., Sakai, T., Nagase, T., Kayama, M., Nishido, H., and Hirao, N. (2013) Discovery of seifertite in a shocked lunar meteorite. Nature Communications, 4, 1737. doi:10.1038/ncomms2733.10.1038/ncomms2733Search in Google Scholar

Moore, R.E., and Karakus, M. (1994) Cathodoluminescence microscopy, a technique uniquely suited to the solution of refractory wear problems. Proceedings of the International Ceramics Conference (Austceram’94), 925–940.Search in Google Scholar

Nakahata, K., Ro, K., Suemasu, A., Kamiya, T., Fortmann, C.M., and Smimizu, I. (2000) Fabrication of polycrystalline silicon films from SiF4H2SiH4 gas mixture using very high frequency plasma enhanced chemical vapor deposition with in situ plasma diagnostics and their structural properties. Japanese Journal of Applied Physics, 39, 3294–3301. doi:10.1143/JJAP.39.3294.10.1143/JJAP.39.3294Search in Google Scholar

Nattrass, C., Horwell, C.J., Damby, D.E., Brown, D., and Stone, V. (2017) The effect of aluminium and sodium impurities on the in vitro toxicity and pro-inflammatory potential of cristobalite. Environmental Research, 159, 164–175. doi:10.1016/j.envres.2017. in Google Scholar

Oelkers, E.H. (2001) General kinetic description of multioxide silicate mineral and glass dissolution. Geochimica et Cosmochimica Acta, 65, 3703–3719.10.1016/S0016-7037(01)00710-4Search in Google Scholar

Pankrath, R., and Flörke, O. W. (1994) Kinetics of Al-Si exchange in low and high quartz: calculation of Al diffusion coefficients. European Journal of Mineralogy, 6, 435–457. doi:10.1127/ejm/6/4/0435.10.1127/ejm/6/4/0435Search in Google Scholar

Perrotta, A.J., Grubbs, D.K., Martin, E.S., Dando, N.R., McKinstry, H.A., and Huang, C.-Y. (1989) Chemical stabilization of β-cristobalite. Journal of the American Ceramic Society, 72, 441–447. doi:10.1111/j.1151-2916.1989.tb06150.x10.1111/j.1151-2916.1989.tb06150.xSearch in Google Scholar

Piazolo, S., La Fontaine, A., Trimby, P., Harley, S., Yang, L., Armstrong, R., and Cairney, J.M. (2016) Deformation-induced trace element redistribution in zircon revealed using atom probe tomography. Nature Communications, 7, 10490. doi:10.1038/ncomms10490.10.1038/ncomms10490Search in Google Scholar PubMed PubMed Central

Pierson, H.O. (1999) Handbook of Chemical Vapour Deposition. Noyes Publications, Norwich, New York.10.1016/B978-081551432-9.50005-XSearch in Google Scholar

Prior, D.J., Mariani, E., and Wheeler, J. (2009) EBSD in the Earth Sciences: Applications, Common Practice, and Challenges. In A.J. Schwartz, M. Kumar, B.L. Adams, and D.P. Field, Eds., Electron Backscatter Diffraction in Materials Science, p. 345–360. Springer, Switzerland.10.1007/978-0-387-88136-2_26Search in Google Scholar

Raghuwanshi, M., Lanterne, A., Le Perchec, J., Pareige, P., Cadel, E., Gall, S., and Duguay, S. (2015) Influence of boron clustering on the emitter quality of implanted silicon solar cells: an atom probe tomography study. Progress in Photovoltaics: Research and Applications, 23, 1724–1733. doi:10.1002/pip.2607.10.1002/pip.2607Search in Google Scholar

Reddy, S.M., van Riessen, A., Saxey, D.W., Johnson, T.E., Rickard, W.D.A., Fougerouse, D., Fischer, S., Prosa, T.J., Rice, K.P., Reinhard, D.A., Chen, Y., and Olson, D. (2016) Mechanisms of deformation-induced trace element migration in zircon resolved by atom probe and correlative microscopy. Geochimica et Cosmochimica Acta, 195, 158–170. doi:10.1016/j.gca.2016. in Google Scholar

Saltzberg, M.A., Bors, S.L., Bergna, H., and Winchester, S.C. (1992) Synthesis of chemically stabilized cristobalite. Journal of the American Ceramic Society, 75, 89–95.10.1111/j.1151-2916.1992.tb05447.xSearch in Google Scholar

Schipper, C.I., Castro, J.M., Tuffen, H., James, M.R., and How, P. (2013) Shallow vent architecture during hybrid explosive-effusive activity at Cordón Caulle (Chile 2011-12): Evidence from direct observations and pyroclast textures. Journal of Volcanology and Geothermal Research, 262, 25–37. doi:10.1016/j. jvolgeores.2013. in Google Scholar

Schipper, C.I., Castro, J.M., Tuffen, H., Wadsworth, F.B., Chappell, D., Pantoja, A.E., Simpson, M., and Le Ru, E.C. (2015) Cristobalite in the 2011-12 Cordón Caulle eruption (Chile). Bulletin of Volcanology, 77, 34. doi:10.1007/s00445-015-0925-z10.1007/s00445-015-0925-zSearch in Google Scholar

Schipper, C.I., Mandon, C., Maksimenko, A., Castro, J.M., Conway, C.E., Hauer, P., Kirilova, M., and Kilgour, G. (2017) Vapor-phase cristobalite as a durable indicator of magmatic pore structure and halogen degassing: An example from White Island volcano (New Zealand). Bulletin of Volcanology, 79, 74. doi:10.1007/s00445-017-1157-1.10.1007/s00445-017-1157-1Search in Google Scholar

Schipper, C.I., Castro, J.M., Kennedy, B.M., Christenson, B.W., Aiuppa, A., Alloway, B.V., Forte, P., Seropian, G., and Tuffen, H. (2019) Halogen (Cl, F) and sulphur release during explosive, effusive, and intrusive phases of the 2011 rhyolitic eruption at Cordón Caulle volcano (Chile). Volcanica, 2, 73–90. doi:10.30909/vol.02.01.7390.10.30909/vol.02.01.7390Search in Google Scholar

Smith, J.V., and Steele, I.M. (1984) Chemical substitution in silica polymorph. Neues Jahrbuch Mineralogie Monatshefte, 3, 137–144.Search in Google Scholar

Stevens-Kalceff, M.A., Phillips, M.R., Moon, A.R. and Kalceff, W. (2000) Cathodoluminescence microcharacterisation of silicon dioxide polymorphs. In M. Pagel, V. Barbin, P. Blanc, and D. Ohnenstetter, Eds. Cathodolumiescence in Geosciences, p. 193–223. Springer-Verlag, Berlin.10.1007/978-3-662-04086-7_8Search in Google Scholar

Swainson, I.P., Dove, M.T., and Palmer, D.C. (2003) Infrared and Raman spectroscopy studies of the α-β transition in cristobalite. Physics and Chemistry of Minerals, 30, 353–365. doi:10.1007/s00269-003-0320-8.10.1007/s00269-003-0320-8Search in Google Scholar

Swanson, S.E., Naney, M.T., Westrich, H.R., and Eichelberger, J.C. (1989) Crystallization history of Obsidian Dome, Inyo Domes, California. Bulletin of Volcanology, 51, 161–176.10.1007/BF01067953Search in Google Scholar

Symonds, R.B., Rose, W.I., Reed, M.H., Lichte, F.E., and Finnegan, D.L. (1987) Volatilization, transport and sublimation of metallic and non-metallic elements in high temperature gases at Merapi Volcano, Indonesia. Geochimica et Cosmochimica Acta, 51, 2083–2101.10.1016/0016-7037(87)90258-4Search in Google Scholar

Tuffen, H., James, M.R., Castro, J.M., and Schipper, C.I. (2013) Exceptional mobility of an advancing rhyolitic obsidian flow at Cordón Caulle volcano in Chile. Nature Communications, 4, 2709. doi: 10.1038/ncomms3709.10.1038/ncomms3709Search in Google Scholar PubMed

Van Valkenburg, A., and Buie, B.F. (1945) Octahedral cristobalite with quartz paramorphs from Ellora Caves, Hyderabad State, India. American Mineralogist, 30, 526–535.Search in Google Scholar

Wahrenberger, C. (1997) Some aspects of the chemistry of volcanic gases. Ph.D. thesis, Swiss Federal Institute of Technology, Zurich.Search in Google Scholar

Withers, R.L., Thompson, J.G., and Welberry, T.R. (1989a) The structure and microstructure of α-cristobalite and its relationship to β-cristobalite. Physics and Chemistry of Minerals, 16, 517–523.10.1007/BF00202206Search in Google Scholar

Withers, R. L., Welberry, T.R., Hua, G.L., Thompson, J.G., and Hyde, B.G. (1989b) A transmission electron microscopy study of cristobalite. Phase Transitions, 16, 41–45. doi:10.1080/01411598908245678.10.1080/01411598908245678Search in Google Scholar

Wolff-Boenisch, D., Gislarson, S.R., and Oelkers, E.H. (2004) The effect of fluoride on the dissolution rates of natural glasses at pH 4 and 25°C. Geochimica et Cosmochimica Acta, 68, 4571–4582. doi:10.1016/j.gca.2004. in Google Scholar

Wu, Y.-F., Fougerouse, D., Evans, K.A., Reddy, S.M., Saxey, D.W., Guagliardo, P., and Li, J.-W. (2019) Gold, arsenic, and copper zoning in pyrite: A record of fluid chemistry and growth kinetics. Geology, 47, 641–644. doi:10.1130/G46114.1.10.1130/G46114.1Search in Google Scholar

Received: 2019-07-31
Accepted: 2019-11-10
Published Online: 2020-04-02
Published in Print: 2020-04-28

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Scroll Up Arrow