Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 2, 2020

Mg diffusion in forsterite from 1250–1600 °C

  • Michael C. Jollands ORCID logo EMAIL logo , Irina Zhukova , Hugh St.C. O’Neill and Jörg Hermann
From the journal American Mineralogist

Abstract

26Mg tracer diffusion coefficients were determined in single crystals of pure synthetic forsterite (Mg2SiO4). Isotopically enriched powder sources both acted as the 26Mg source and buffered the activities of silica (aSiO2)at forsterite + protoenstatite (Mg2Si2O6) (high aSiO2)and forsterite + periclase (MgO) (low aSiO2).Experiments were conducted at atmospheric pressure between 1250 and 1600 °C, and at oxygen fugacities (fO2S)between 10–12 bars (CO-CO2 mix) and 10–0.7 bars (air). The resulting diffusion profiles were measured along the three principal crystallographic axes (a, b, and c; ||[100], ||[010], ||[001]) using laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS), with a quadrupole mass spectrometer. These measurements were corroborated by ion microprobe using the sensitive high resolution ion microprobe-reverse geometry (SHRIMP-RG) instrument.

Mg tracer diffusion is anisotropic, with D[001] > D[010] > D[100], the difference in diffusion coefficients varying by about one order of magnitude at a given temperature with crystallographic orientation. Diffusion is faster in protoenstatite-buffered than periclase-buffered conditions, again with around one order of magnitude difference in diffusivity between buffering conditions. There is no apparent effect of fO2on diffusion. A global fit to all data, including data from Chakraborty et al. (1994) and Morioka (1981) yields the relationship:

log10D=log10D0(m2s1)+0.61(±0.03)log10aSiO2+359(±10)kJ/mol2.303RT

where log10D0 is –3.15 (±0.08), –3.61 (±0.02), and –4.01 (± 0.05) m2 s–1 for the [001], [010], and [100] directions, respectively (1 s.d.). The LA-ICP-MS technique reproduces diffusion coefficients determined by SHRIMP-RG, albeit with slightly different absolute values of isotope ratios. This shows that LA-ICP-MS, which is both accessible and rapid, is a robust analytical method for such tracer diffusion studies.


* Present address: Lamont-Doherty Earth Observatory, 61 Rte 9W, Palisades, NY 10964, U.S.A.


Acknowledgments

Trevor Ireland, Peter Holden, Morgan Williams, Laure Gauthiez-Putallaz, and Mari-Rosa Schiccitano are thanked for help with various aspects of SHRIMP analyses. Joshua Muir, Andrew Walker, Othmar Müntener, Elias Bloch, Jung-Woo Park, Carl Mitchell, Dave Clark, and Dean Scott are acknowledged for various assistance and useful discussions. Daniele Cherniak and an anonymous reviewer are thanked for reviews that helped to strengthen the manuscript.

References cited

Andersen, O., and Bowen, N. (1914) Das binäre System Magnesiumoxyd-Silicium-2-oxyd. Zeitschrift für anorganische Chemie, 87, 283–299.10.1002/zaac.19140870120Search in Google Scholar

Andersson, K. (1987) Materietransport und Defektstrukturen in kristallinem Magnesiumorthosilicat bei höheren Temperaturen. Ph.D. thesis, Technischen Universität Clausthal.Search in Google Scholar

Andersson, K., and Borchardt, G. (1989) Defect structure and self diffusion in Mg2SiO4 (forsterite) at high temperature. In J. Nowotny and W. Weppner, Eds., Non-Stoichiometric Compounds. NATO ASI Series (Series C: Mathematical and Physical Sciences), vol 276, pp. 399–409. Springer, Dordrecht10.1007/978-94-009-0943-4_27Search in Google Scholar

Andersson, K., Borchardt, G., Scherrer, S., and Weber, S. (1989) Self-diffusion in Mg2SiO4 (forsterite) at high temperature. Fresenius Zeitschrift für analytische Chemie, 333, 383–385.10.1007/BF00572330Search in Google Scholar

Ando, K., Kurokawa, H., Oishi, Y., and Takei, H. (1981) Self-diffusion coefficient of oxygen in single-crystal forsterite. Communications of the American Ceramic Society, 64, C30.10.1111/j.1151-2916.1981.tb09567.xSearch in Google Scholar

Bejina, F., Jaoul, O., and Liebermann, R.C. (1999) Activation volume of Si diffusion in San Carlos olivine: Implications for upper mantle rheology. Journal of Geophysical Research: Solid Earth, 104, 25,529–25,542.10.1029/1999JB900270Search in Google Scholar

Bloch, E.M., Jollands, M.C., Gerstl, S.S.A., Bouvier, A.S., Plane, F., and Baumgartner, L.P. (2019) Diffusion of calcium in forsterite and ultra-high resolution of experimental diffusion profiles in minerals using local electrode atom probe tomography. Geochimica et Cosmochimica Acta, 265, 85–95.10.1016/j.gca.2019.09.003Search in Google Scholar

Brodholt, J. (1997) Ab initio calculations on point defects in forsterite (Mg2SiO4 and implications for diffusion and creep. American Mineralogist, 82, 1049–1053.10.2138/am-1997-11-1201Search in Google Scholar

Buening, D.K., and Buseck, P.R. (1973) Fe-Mg lattice diffusion in olivine. Journal of Geophysical Research, 78, 6852–6862.10.1029/JB078i029p06852Search in Google Scholar

Burns, R.G. (1970) Site preferences of transition metal ions in silicate crystal structures. Chemical Geology, 5, 275–283.10.1016/0009-2541(70)90045-8Search in Google Scholar

Chakraborty, S. (1997) Rates and mechanisms of Fe-Mg interdiffusion in olivine at 980–1300°C. Journal of Geophysical Research: Solid Earth, 102, 12317–12331.10.1029/97JB00208Search in Google Scholar

Chakraborty, S., Farver, J.R., Yund, R.A., and Rubie, D.C. (1994) Mg tracer diffusion in synthetic forsterite and San-Carlos olivine as a function of PT and Physics and Chemistry of Minerals, 21, 489–500.10.1007/BF00203923Search in Google Scholar

Cherniak, D.J. (2010) REE diffusion in olivine. American Mineralogist, 95, 362–368.10.2138/am.2010.3345Search in Google Scholar

Cherniak, D.J., and Liang, Y. (2014) Titanium diffusion in olivine. Geochimica et Cosmochimica Acta, 147, 43–57.10.1016/j.gca.2014.10.016Search in Google Scholar

Cherniak, D.J., and Watson, E.B. (2012) Diffusion of helium in olivine at 1 atm and 2.7 GPa: Geochimica et Cosmochimica Acta, 84, 269–279.Search in Google Scholar

Coogan, L.A., Hain, A., Stahl, S., and Chakraborty, S. (2005) Experimental determination of the diffusion coefficient for calcium in olivine between 900°C and 1500°C. Geochimica et Cosmochimica Acta, 69, 3683–3694.10.1016/j.gca.2005.03.002Search in Google Scholar

Costa, F., and Chakraborty, S. (2008) The effect of water on Si and O diffusion rates in olivine and implications for transport properties and processes in the upper mantle. Physics of the Earth and Planetary Interiors, 166, 11–29.10.1016/j.pepi.2007.10.006Search in Google Scholar

Crank, J. (1975) The Mathematics of Diffusion. Oxford University Press.Search in Google Scholar

Crépisson, C., O’Neill, H.St.C., Hermann, J., and Spandler, C. (2012) Diffusion of yttrium in olivine. European Mineralogical Conference, European Mineralogical Union.Search in Google Scholar

De Hoog, J.C., Gall, L., and Cornell, D.H. (2010) Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry. Chemical Geology, 270, 196–215.10.1016/j.chemgeo.2009.11.017Search in Google Scholar

Demouchy, S., and Mackwell, S. (2003) Water diffusion in synthetic iron-free forsterite. Physics and Chemistry of Minerals, 30, 486–494.10.1007/s00269-003-0342-2Search in Google Scholar

Demouchy, S., and Mackwell, S. (2006) Mechanisms of hydrogen incorporation and diffusion in iron-bearing olivine. Physics and Chemistry of Minerals 33.10.1007/s00269-006-0081-2Search in Google Scholar

Dohmen, R., and Chakraborty, S. (2007) Fe-Mg diffusion in olivine II: point defect chemistry, change of diffusion mechanisms and a model for calculation of diffusion coefficients in natural olivine. Physics and Chemistry of Minerals, 34, 597–598.10.1007/s00269-007-0185-3Search in Google Scholar

Dohmen, R., Becker, H.W., Meissner, E., Etzel, T., and Chakraborty, S. (2002a) Production of silicate thin films using pulsed laser deposition (PLD) and applications to studies in mineral kinetics. European Journal of Mineralogy, 14, 1155–1168.10.1127/0935-1221/2002/0014-1155Search in Google Scholar

Dohmen, R., Chakraborty, S., and Becker, H.-W. (2002b) Si and O diffusion in olivine and implications for characterizing plastic flow in the mantle. Geophysical Research Letters, 29, 2030.10.1029/2002GL015480Search in Google Scholar

Dohmen, R., Becker, H.W., and Chakraborty, S. (2007) Fe-Mg diffusion in olivine I: experimental determination between 700 and 1,200°C as a function of composition, crystal orientation and oxygen fugacity. Physics and Chemistry of Minerals, 34, 389–407.10.1007/s00269-007-0157-7Search in Google Scholar

Fei, H.Z., Hegoda, C., Yamazaki, D., Wiedenbeck, M., Yurimoto, H., Shcheka, S., and Katsura, T. (2012) High silicon self-diffusion coefficient in dry forsterite. Earth and Planetary Science Letters, 345, 95–103.10.1016/j.epsl.2012.06.044Search in Google Scholar

Fei, H., Wiedenbeck, M., Yamazaki, D., and Katsura, T. (2013) Small effect of water on upper-mantle rheology based on silicon self-diffusion coefficients. Nature, 498, 213–215.10.1038/nature12193Search in Google Scholar

Fei, H., Koizumi, S., Sakamoto, N., Hashiguchi, M., Yurimoto, H., Marquardt, K., Miyajima, N., and Katsura, T. (2018) Mg lattice diffusion in iron-free olivine and implications to conductivity anomaly in the oceanic asthenosphere. Earth and Planetary Science Letters, 484, 204–212.10.1016/j.epsl.2017.12.020Search in Google Scholar

Ghose, S., and Wan, C.n. (1974) Strong site preference of Co2+ in olivine, Co1.10Mg0.90SiO4 Contributions to Mineralogy and Petrology, 47, 131–140.10.1007/BF00372114Search in Google Scholar

Hallwig, D., Schachtner, R., and Sockel, H. (1979) Diffusion of magnesium, silicon and oxygen in Mg2SiO4 and formation of the compound in the solid state. In H. Hausner, Ed., Proceedings of the 10th International Conference ‘Science of Ceramics’. Berchtesgaden, W. Germany.Search in Google Scholar

Hier-Majumder, S., Anderson, I.M., and Kohlstedt, D.L. (2005) Influence of protons on Fe-Mg interdiffusion in olivine. Journal of Geophysical Research: Solid Earth, 110.10.1029/2004JB003292Search in Google Scholar

Holland, T., and Powell, R. (2011) An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. Journal of Metamorphic Geology, 29, 333–383.10.1111/j.1525-1314.2010.00923.xSearch in Google Scholar

Ito, M., and Ganguly, J. (2006) Diffusion kinetics of Cr in olivine and 53Mn–53Cr thermochronology of early solar system objects. Geochimica et Cosmochimica Acta, 70, 799–809.10.1016/j.gca.2005.09.020Search in Google Scholar

Jaoul, O., Froidevaux, C., Durham, W.B., and Michaut, M. (1980) Oxygen self-diffusion in forsterite: Implications for the high-temperature creep mechanism. Earth and Planetary Science Letters, 47, 391–397.10.1016/0012-821X(80)90026-6Search in Google Scholar

Jochum, K.P., Weis, U., Stoll, B., Kuzmin, D., Yang, Q., Raczek, I., Jacob, D.E., Stracke, A., Birbaum, K., Frick, D.A., Günther, D., and Enzweiler, J. (2011) Determination of Reference Values for NIST SRM 610-617 Glasses Following ISO Guidelines. Geostandards and Geoanalytical Research, 35, 397–429.10.1111/j.1751-908X.2011.00120.xSearch in Google Scholar

Jollands, M.C., O’Neill, H.St.C., and Hermann, J. (2014) The importance of defining chemical potentials, substitution mechanisms and solubility in trace element diffusion studies: the case of Zr and Hf in olivine. Contributions to Mineralogy and Petrology, 168, 1–19.10.1007/s00410-014-1055-xSearch in Google Scholar

Jollands, M.C., Hermann, J., O’Neill, H.St.C., Spandler, C., and Padrón-Navarta, J.A. (2016a) Diffusion of Ti and some divalent cations in olivine as a function of temperature, oxygen fugacity, chemical potentials and crystal orientation. Journal of Petrology, 57, 1983–2010.10.1093/petrology/egw067Search in Google Scholar

Jollands, M.C., Padrón-Navarta, J.A., Hermann, J., and O’Neill, H.St.C. (2016b) Hydrogen diffusion in Ti-doped forsterite and the preservation of metastable point defects. American Mineralogist 101, 1560–1570.10.2138/am-2016-55681571Search in Google Scholar

Jollands, M., O’Neill, H.St.C., Van Orman, J., Berry, A., Hermann, J., Newville, M., and Lanzirotti, A. (2018) Substitution and diffusion of Cr2+ and Cr3+ in synthetic forsterite and natural olivine at 1200–1500° C and 1 bar. Geochimica et Cosmochimica Acta, 220, 407–428.10.1016/j.gca.2017.09.030Search in Google Scholar

Jurewicz, A.J.G., and Watson, E.B. (1988) Cations in olivine. 1. Calcium partitioning and calcium-magnesium distribution between olivines and coexisting melts, with petrologic applications. Contributions to Mineralogy and Petrology, 99, 176–185.10.1007/BF00371459Search in Google Scholar

Le Losq, C., Jollands, M.C., Tollan, P.M.E., Hawkins, R., and O’Neill, H.S.C. (2019) Point defect populations of forsterite revealed by two-stage metastable hydroxylation experiments: Contributions to Mineralogy and Petrology, 174, 53.10.1007/s00410-019-1590-6Search in Google Scholar

Lemaire, C., Kohn, S., and Brooker, R. (2004) The effect of silica activity on the incorporation mechanisms of water in synthetic forsterite: a polarised infrared spectroscopic study. Contributions to Mineralogy and Petrology, 147, 48–57.10.1007/s00410-003-0539-xSearch in Google Scholar

Li, J.-P., O’Neill, H.St.C., and Seifert, F. (1995) Subsolidus phase relations in the system MgO-SiO2-Cr-O in equilibrium with metallic Cr, and their significance for the petrochemistry of chromium. Journal of Petrology, 36, 107–132.10.1093/petrology/36.1.107Search in Google Scholar

Longerich, H., Jackson, S., and Gunther, D. (1996) Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. Journal of Analytical Atomic Spectroscopy, 11, 899–904.10.1039/JA9961100899Search in Google Scholar

Lumpkin, G.R., Ribbe, P.H., and Lumpkin, N.E. (1983) Composition, order-disorder and lattice parameters of olivines; determinative methods for Mg-Mn and Mg-Ca silicate olivines. American Mineralogist, 68, 1174–1182.Search in Google Scholar

Matsui, Y., and Syono, Y. (1968) Unit cell dimensions of some synthetic olivine group solid solutions. Geochemical Journal, 2, 51–59.10.2343/geochemj.2.51Search in Google Scholar

Matveev, S., O’Neill, H.St.C., Ballhaus, C., Taylor, W.R., and Green, D. (2001) Effect of silica activity on OH-IR spectra of olivine: Implications for low-mantle metasomatism. Journal of Petrology, 42, 721–729.10.1093/petrology/42.4.721Search in Google Scholar

Morioka, M. (1981) Cation diffusion in olivine. 2. Ni-Mg, Mn-Mg, Mg and Ca. Geochimica et Cosmochimica Acta, 45, 1573–1580.10.1016/0016-7037(81)90286-6Search in Google Scholar

Mukhopadhyay, D.K., and Lindsley, D.H. (1983) Phase relations in the join kirschsteinite (CaFeSiO4–fayalite (Fe2SiO4 American Mineralogist, 68, 1089–1094.Search in Google Scholar

O’Neill, H.St.C. (1987) Quartz-fayalite-iron and quartz-fayalite-magnetite equilibria and the free energy of formation of fayalite (Fe2SiO4 and magnetite (Fe3O4 American Mineralogist, 72, 67–75.Search in Google Scholar

O’Neill, H. St.C., and Eggins, S.M. (2002) The effect of melt composition on trace element partitioning: an experimental investigation of the activity coefficients of FeO, NiO, CoO, MoO2 and MoO3 in silicate melts. Chemical Geology, 186, 151–18110.1016/S0009-2541(01)00414-4Search in Google Scholar

Paton, C., Hellstrom, J., Paul, B., Woodhead, J., and Hergt, J. (2011) Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26, 2508–2518.10.1039/c1ja10172bSearch in Google Scholar

Petričević, V., Gayen, S.K., Alfano, R.R., Yamagishi, K., Anzai, H., and Yamaguchi, Y. (1988) Laser action in chromium-doped forsterite. Applied Physics and Letters, 52, 1040–1042.10.1063/1.99203Search in Google Scholar

Plushkell, W., and Engell, H.J. (1968) Ionen und Elektronenleitung in Magnesium Orthosilikat. Berichte der Deutschen Keramischen Gesellschaft, 45, 388.Search in Google Scholar

Qian, Q., O’Neill, H.St.C., and Hermann, J. (2010) Comparative diffusion coefficients of major and trace elements in olivine at similar to 950 °C from a xenocryst included in dioritic magma. Geology, 38, 331–334.10.1130/G30788.1Search in Google Scholar

Reddy, K.P.R., Oh, S.M., Major, L.D., and Cooper, A.R. (1980) Oxygen diffusion in forsterite. Journal of Geophysical Research, 85, 322–326.10.1029/JB085iB01p00322Search in Google Scholar

Ryerson, F.J., Durham, W.B., Cherniak, D.J., and Lanford, W.A. (1989) Oxygen diffusion in olivine—Effect of oxygen fugacity and implications for Creep. Journal of Geophysical Research: Solid Earth, 94, 4105–4118.10.1029/JB094iB04p04105Search in Google Scholar

Schindelin, J., Rueden, C.T., Hiner, M.C., and Eliceiri, K.W. (2015) The ImageJ ecosystem: An open platform for biomedical image analysis. Molecular Reproduction and Development, 82, 518–529.10.1002/mrd.22489Search in Google Scholar PubMed PubMed Central

Smyth, D.M., and Stocker, R.L. (1975) Point defects and non-stoichiometry in forsterite. Physics of the Earth and Planetary Interiors, 10, 183–192.10.1016/0031-9201(75)90037-0Search in Google Scholar

Sockel, H., and Hallwig, D. (1977) Ermittlung kleiner Diffusionskoeffizienten mittels SIMS in oxydischen Verbindungen, Achtes Kolloquium über Metallkundliche Analyse mit Besonderer Berücksichtigung der Elektronenstrahl-und Ionenstrahl-Mikroanalyse Wien, 27. bis 29. Oktober 1976, pp. 95–107. Springer.10.1007/978-3-7091-3724-6_6Search in Google Scholar

Sockel, H.G., Hallwig, D., Schachtner, R. (1980) Investigations of slow exchange processes at metal and oxide surfaces and interfaces using secondary ion mass spectrometry. Materials Science and Engineering, 42, 59–64.10.1016/0025-5416(80)90011-7Search in Google Scholar

Spandler, C., and O’Neill, H.St.C. (2010) Diffusion and partition coefficients of minor and trace elements in San Carlos olivine at 1,300°C with some geochemical implications. Contributions to Mineralogy and Petrology, 159, 791–818.10.1007/s00410-009-0456-8Search in Google Scholar

Spandler, C., O’Neill, H.St.C., and Kamenetsky, V.S. (2007) Survival times of anomalous melt inclusions from element diffusion in olivine and chromite. Nature, 447, 303–306.10.1038/nature05759Search in Google Scholar

Stocker, R., and Smyth, D. (1978) Effect of enstatite activity and oxygen partial pressure on the point-defect chemistry of olivine. Physics of the Earth and Planetary Interiors, 16, 145–156.10.1016/0031-9201(78)90085-7Search in Google Scholar

Tollan, P.M.E., Smith, R., O’Neill, H.St.C., and Hermann, J. (2017) The responses of the four main substitution mechanisms of H in olivine to H2O activity at 1050 °C and 3 GPa. Progress in Earth and Planetary Sciences, 4, 14.10.1186/s40645-017-0128-7Search in Google Scholar

Walker, A.M., Woodley, S.M., Slater, B., and Wright, K. (2009) A computational study of magnesium point defects and diffusion in forsterite. Physics of the Earth and Planetary Interiors, 172, 20–27.10.1016/j.pepi.2008.04.001Search in Google Scholar

Wang, Z. Y., Hiraga, T., and Kohlstedt, D.L. (2004) Effect of H+ on Fe-Mg interdiffusion in olivine, (Fe,Mg)2SiO4 Applied Physics and Letters, 85, 209–211.10.1063/1.1769593Search in Google Scholar

Zhukova, I., O’Neill, H.St.C., Cambell, I.H., and Kilburn, M.R. (2014) The effect of silica activity on the diffusion of Ni and Co in olivine. Contributions to Mineralogy and Petrology, 168, 1–15.10.1007/s00410-014-1029-zSearch in Google Scholar

Zhukova, I., O’Neill, H., and Campbell, I.H. (2017) A subsidiary fast-diffusing substitution mechanism of Al in forsterite investigated using diffusion experiments under controlled thermodynamic conditions. Contributions to Mineralogy and Petrology, 172, 53.10.1007/s00410-017-1365-xSearch in Google Scholar

Zhukova, I., O’Neill, H., Campbell, I.H., Fiorentini, M., Kilburn, M., and Guagliardo, P. (2018) Diffusion and solubilities of Rh, Ru, and Ir in olivine and spinel. Chemical Geology, 494, 19–29.10.1016/j.chemgeo.2018.07.009Search in Google Scholar

Received: 2019-09-13
Accepted: 2019-11-10
Published Online: 2020-04-02
Published in Print: 2020-04-28

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 10.12.2023 from https://www.degruyter.com/document/doi/10.2138/am-2020-7286/html
Scroll to top button