Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 29, 2020

An evolutionary system of mineralogy. Part II: Interstellar and solar nebula primary condensation mineralogy (>4.565 Ga)

Shaunna M. Morrison ORCID logo and Robert M. Hazen
From the journal American Mineralogist

Abstract

The evolutionary system of mineralogy relies on varied physical and chemical attributes, including trace elements, isotopes, solid and fluid inclusions, and other information-rich characteristics, to understand processes of mineral formation and to place natural condensed phases in the deep-time context of planetary evolution. Part I of this system reviewed the earliest refractory phases that condense at T > 1000 K within the turbulent expanding and cooling atmospheres of highly evolved stars. Part II considers the subsequent formation of primary crystalline and amorphous phases by condensation in three distinct mineral-forming environments, each of which increased mineralogical diversity and distribution prior to the accretion of planetesimals >4.5 billion years ago.

(1) Interstellar molecular solids: Varied crystalline and amorphous molecular solids containing primarily H, C, O, and N are observed to condense in cold, dense molecular clouds in the interstellar medium (10 < T < 20 K; P < 10–13 atm). With the possible exception of some nanoscale organic condensates preserved in carbonaceous meteorites, the existence of these phases is documented primarily by telescopic observations of absorption and emission spectra of interstellar molecules in radio, microwave, or infrared wavelengths.

(2) Nebular and circumstellar ice: Evidence from infrared observations and laboratory experiments suggest that cubic H2O (“cubic ice”) condenses as thin crystalline mantles on oxide and silicate dust grains in cool, distant nebular and circumstellar regions where T ~100 K.

(3) Primary condensed phases of the inner solar nebula: The earliest phase of nebular mineralogy saw the formation of primary refractory minerals that solidified through high-temperature condensation (1100 < T < 1800 K; 10–6 < P < 10–2 atm) in the solar nebula more than 4.565 billion years ago. These earliest mineral phases originating in our solar system formed prior to the accretion of planetesimals and are preserved in calcium-aluminum-rich inclusions, ultra-refractory inclusions, and amoeboid olivine aggregates.

Funding source: Alfred P. Sloan Foundation

Funding source: W.M. Keck Foundation

Funding source: John Templeton Foundation

Funding source: National Aeronautics and Space Administration

Funding statement: This publication is a contribution to the Deep Carbon Observatory. Studies of mineral evolution and mineral ecology have been supported by the Deep Carbon Observatory, the Alfred P. Sloan Foundation, the W.M. Keck Foundation, the John Templeton Foundation, the NASA Astrobiology Institute ENIGMA team, a private foundation, and the Carnegie Institution for Science. Any opinions, findings, or recommendations expressed herein are those of the authors and do not necessarily reflect the views of the National Aeronautics and Space Administration.

Acknowledgments

We thank Anirudh Prabhu, who developed the bipartite network representation of stellar, interstellar, and nebular mineralogy. We are grateful to Denton Ebel, Alexander Krot, and Chi Ma for providing images of refractory inclusions. Denton Ebel, Chi Ma, Alan Rubin, and B.J. Tkalcec contributed invaluable detailed reviews of the manuscript. The sections on nebular condensate mineralogy, in particular, benefitted from the advice of Rubin and Ma, who provided access to highly relevant work in press, including a draft of their forthcoming book, Meteorite Mineralogy. We are grateful to Conel M.O’D. Alexander, Asmaa Boujibar, Carol Cleland, Robert T. Downs, Olivier Gagné, Sergey Krivovichev, Glenn MacPherson, Michael Walter, and Shuang Zhang for thoughtful discussions and comments.

References cited

Abe, T., Tsukamoto, K., and Sunagawa, I. (1991) Nucleation, growth and stability of CaAl2Si2O8 polymorphs. Physics and Chemistry of Minerals, 17, 257–281.10.1007/BF00202227Search in Google Scholar

Affiatalab, F., and Wasson, J.T. (1980) Composition of the metal phases in ordinary chondrites: Implications regarding classification and metamorphism. Geochimica et Cosmochimica Acta, 44, 431–446.10.1016/0016-7037(80)90042-3Search in Google Scholar

Aléon, J., Krot, A.N., and McKeegan, K.D. (2002) Calcium–aluminum-rich inclusions and amoeboid olivine aggregates from the CR carbonaceous chondrites. Meteoritics & Planetary Science, 37, 1729–1755.10.1111/j.1945-5100.2002.tb01160.xSearch in Google Scholar

Alexander, C.M.O’D., Fogel, M., Yabuta, H., and Cody, G.D. (2007) The origin and evolution of chondrites recorded in the elemental and isotopic compositions of their macromolecular organic matter. Geochimica et Cosmochimica Acta, 71, 4380–4403.10.1016/j.gca.2007.06.052Search in Google Scholar

Alexander, C.M.O’D., McKeegan, K.D., and Altwegg, K. (2018) Water reservoirs in small planetary bodies: meteorites, asteroids, and comets. Space Science Reviews, 214, 36–83. Doi: 10.1007/s11214-018-0474-9.10.1007/s11214-018-0474-9Search in Google Scholar

Allamandola, L.J., Bernstein, M.P., Sandford, S.A., and Walker, R.L. (1999) Evolution of interstellar ices. Space Science Reviews, 90, 219–232.10.1007/978-94-011-4211-3_20Search in Google Scholar

Allen, J.M., Grossman, L., Lee, T., and Wasserburg, G.J. (1980) Mineralogy and petrography of HAL, an isotopically unusual Allende inclusion. Geochimica et Cosmochimica Acta, 44, 685–699.10.1016/0016-7037(80)90158-1Search in Google Scholar

Amelin, Y., Krot, A.N., Hutcheon, I.D., and Ulyanov, A.A. (2002) Lead isotopic ages of chondrules and calcium–aluminum-rich inclusions. Science, 297, 1678–1683.10.1126/science.1073950Search in Google Scholar

Amelin, Y., Kaltenbach, A., Iizuka, T., Stirling, C.H., Ireland, T.R., Petaev, M., and Jacobsen, S.B. (2010) U–Pb chronology of the solar system’s oldest solids with variable 238U/235U. Earth and Planetary Science Letters, 300, 343–350.10.1016/j.epsl.2010.10.015Search in Google Scholar

Anders, E., and Grevesse, N. (1989) Abundances of the elements: Meteoritic and solar. Geochimica et Cosmochimica Acta, 53, 197–214.10.1016/0016-7037(89)90286-XSearch in Google Scholar

Armstrong, J.T., Meeker, G.P., Huneke, J.C., and Wasserburg, G.J. (1982) The Blue Angel: I. mineralogy and petrogenesis of a hibonite inclusion from the Murchison meteorite. Geochimica et Cosmochimica Acta, 46, 575–595.10.1016/0016-7037(82)90160-0Search in Google Scholar

Armstrong, J.T., El Goresy, A., and Wasserburg, G.J. (1985) Willy: A prize noble Ur-Fremdling—its history and implications for the formation of Fremdlinge and CAI. Geochimica et Cosmochimica Acta, 49, 1001–1022.10.1016/0016-7037(85)90315-1Search in Google Scholar

Armstrong, J.T., Hutcheon, I.D., and Wasserburg, G.J. (1987) Zelda and company: Petrogenesis of sulfide-rich fremdlinge and constraints on solar nebula processes. Geochimica et Cosmochimica Acta, 51, 3155–3173.10.1016/0016-7037(87)90125-6Search in Google Scholar

Asratian, A.S., Denley, T.M.J., and Häggkvist, R. (1998) Bipartite Graphs and their Applications. Cambridge University Press.10.1017/CBO9780511984068Search in Google Scholar

Bar-Matthews, M., Hutcheon, I.D., MacPherson, G.J., and Grossman, L. (1982) A corundum-rich inclusion in the Murchison carbonaceous chondrite. Geochimica et Cosmochimica Acta, 46, 31–41.10.1016/0016-7037(82)90288-5Search in Google Scholar

Bartels-Rausch, T., Bergeron, V., Cartwright, J.H.E., Escribano, R., Finney, J.L., Grothe, H., Gutirrez, P.J., Haapala, J., Kuhs, W.F., Pettersson, J.B.C., and others. (2012) Ice structures, patterns, and processes: A view across the icefields. Reviews of Modern Physics, 84, 885–944.10.1103/RevModPhys.84.885Search in Google Scholar

Beckett, J.R. (1986) The origin of calcium-, aluminum-rich inclusions from carbonaceous chondrites: An experimental study. Ph.D.dissertation, University of Chicago, Illinois.Search in Google Scholar

Beckett, J.R., and Stolper, E. (1994) The stability of hibonite, melilite and other aluminous phases in silicate melts: Implications for the origin of hibonitebearing inclusions from carbonaceous chondrites. Meteoritics, 29, 41–65.10.1111/j.1945-5100.1994.tb00651.xSearch in Google Scholar

Beckett, J.R., Live, D., Tsay, F.-D., Grossman, L., and Stolper, E. (1988) Ti3+ in meteoritic and synthetic hibonite. Geochimica et Cosmochimica Acta, 52, 1479–1495.10.1016/0016-7037(88)90219-0Search in Google Scholar

Beckett, J.R., Simon, S.B., and Stolper, E. (2000) The partitioning of Na between melilite and liquid: Part II. Applications to Type B inclusions from carbonaceous chondrites. Geochimica et Cosmochimica Acta, 64, 2519–2534.10.1016/S0016-7037(00)00371-9Search in Google Scholar

Berg, T., Maul, J., Schönhense, G., Marosits, E., Hoppe, P., Ott, U., and Palme, H. (2009) Direct evidence for condensation in the early solar system and implications for nebular cooling rates. The Astrophysical Journal, 702, L172–L176.10.1088/0004-637X/702/2/L172Search in Google Scholar

Bertout, C. (1989) T Tauri stars—wild as dust. Annual Reviews of Astronomy and Astrophysics, 27, 351–395.10.1146/annurev.aa.27.090189.002031Search in Google Scholar

Bevan, A.W.R., and Axon, H.J. (1980) Metallography and thermal history of the Tieschitz unequilibrated meteorite—metallic chondrules and the origin of polycrystalline taenite. Earth and Planetary Science Letters, 47, 353–360.10.1016/0012-821X(80)90022-9Search in Google Scholar

Birjukov, V., and Ulyanov, V. (1996) Petrology and classification of new Antarctic carbonaceous chondrites PCA91082, TIL91722, and WIS91600. Proceedings of the NIPR Symposium on Antarctic Meteorites, 9, 8–19.Search in Google Scholar

Bischoff, A., and Palme, H. (1987) Composition and mineralogy of refractory-metal-rich assemblages from a Ca,Al-rich inclusion in the Allende meteorite. Geochimica et Cosmochimica Acta, 51, 2733–2748.10.1016/0016-7037(87)90153-0Search in Google Scholar

Bisschop, S.E., Fuchs, G.W., Boogert, A.C.A., van Dishoeck, E.F., and Linnartz, H. (2007) Infrared spectroscopy of HCOOH in interstellar ice analogues. Astronomy & Astrophysics, 470, 749–759.10.1051/0004-6361:20077464Search in Google Scholar

Blander, L., and Fuchs, L.H. (1975) Calcium-aluminum-rich inclusions in the Allende meteorite: Evidence for a liquid origin. Geochimica et Cosmochimica Acta, 39, 1605–1619.10.1016/0016-7037(75)90083-6Search in Google Scholar

Blander, L., Fuchs, L.H., Horowitz, C., and Land, R. (1980) Primordial refractory metal particles in the Allende meteorite. Geochimica et Cosmochimica Acta, 44, 217–223.10.1016/0016-7037(80)90133-7Search in Google Scholar

Blum, J.D., Wasserburg, G.J., Hutcheon, I.D., Beckett, J.R., and Stopler, E.M. (1988) “Domestic” origin of opaque assemblages in refractory inclusions in meteorites. Nature, 331, 405–409.10.1038/331405a0Search in Google Scholar

Blum, J.D., Wasserburg, G.J., Hutcheon, I.D., Beckett, J.R., and Stopler, E.M. (1989) Origin of opaque assemblages in CV3 meteorites: Implications for nebular and planetary processes. Geochimica et Cosmochimica Acta, 53, 543–556.10.1016/0016-7037(89)90404-3Search in Google Scholar

Boogert, A.C.A., and Ehfrenfreund, P. (2004) Interstellar ices. In A.N. Witt, G.C. Clayton, and B.T. Draine, Eds., Astrophysics of Dust. ASP Conference Series, 309, 547–573.Search in Google Scholar

Boogert, A.C.C., Schutte, W.A., Tielens, A.G.G.M., Whittet, D.C.B., Helmich, F.P., Ehrenfreund, P., Wesselius, P.R., de Graauw, T., and Prusti, T. (1996) Solid methane toward deeply embedded protostars. Astronomy & Astrophysics, 315, L377–L380.Search in Google Scholar

Boogert, A.C.C., Schutte, W.A., Helmich, F.P., Tielens, A.G.G.M., and Wooden, D.H. (1997) Infrared observations and laboratory simulations of interstellar CH4 and SO2 Astronomy & Astrophysics, 317, 929–941.Search in Google Scholar

Boogert, A.C.C., Helmich, F.P., van Dishoeck, E.F., Schutte, W.A., Tielens, A.G.G.M., and Whittet, D.C.B. (1998) The gas/solid methane abundance ratio toward deeply embedded protostars. Astronomy & Astrophysics, 336, 352–358.Search in Google Scholar

Boss, A.J., and Durisen, R.H. (2005) Sources of shock waves in the protoplanetary disk. ASP Conference Series, 341, 821–838.Search in Google Scholar

Bowles, J.F.W. (1988) Definition and range of composition of naturally occurring minerals with the pseudobrookite structure. American Mineralogist, 73, 1377–1383.Search in Google Scholar

Brearley, A.J., and Jones, R.H. (1998) Chondritic meteorites. Reviews in Mineralogy, 36, 3.01–3.398.Search in Google Scholar

Burke, E.A.J. (2006) The end of CNMMN and CCM—Long live the CNMNC! Elements, 2, 388.10.2113/gselements.2.6.388Search in Google Scholar

Caillet, C., Zinner, E.K., and MacPherson, G.J. (1993) Petrologic and Al–Mg isotopic clues to the accretion of two refractory inclusions onto the Leoville parent body: One was hot, the other wasn’t. Geochimica et Cosmochimica Acta, 57, 4725–4743.10.1016/0016-7037(93)90196-4Search in Google Scholar

Campbell, A.J., Zanda, B., Perron, C., Meiborn, A., and Petaev, M.I. (2005) Origin and thermal history of Fe-Ni metal in primitive chondrites. In A.N. Krot, E.R.D. Scott, and B. Reipurth, Eds., Chondrites and the Protoplanetary Disk. Astronomical Society of the Pacific Conference Series, 341, 407–431.Search in Google Scholar

Casanova, I., and Simon, S.B. (1994) Opaque minerals in CAIs, and classification of the Axtell (CV3) chondrite. Meteoritics, 29, 454–455.Search in Google Scholar

Chiar, J.E., Adamson, A.J., Kerr, T.H., and Whittet, D.C.B. (1995) High-resolution studies of solid CO in the Taurus Dark Cloud: Characterizing the ices in quiescent clouds. The Astrophysical Journal, 455, 234–243.10.1086/176571Search in Google Scholar

Chiar, J.E., Adamson, A.J., and Whittet, D.C.B. (1996) Three micrometer hydrocarbon and methanol absorption in taurus. The Astrophysical Journal, 472, 665.10.1086/178097Search in Google Scholar

Chiar, J.E., Adamson, A.J., and Whittet, D.C.B. (1998) Detection of abundant CO2 ice in the quiescent dark cloud medium toward Elias 16. The Astrophysical Journal, 498, L159–L163.10.1086/311318Search in Google Scholar

Chiar, J.E., Tielens, A.G.G.M., Whittet, D.C.B., Schutte, W.A., Boogert, A.C.A., Lutz, D., van Dishoeck, E.F., and Bernstein, M.P. (2000) The composition and distribution of dust along the line of sight toward the galactic center. The Astrophysical Journal, 537, 749–762.10.1086/309047Search in Google Scholar

Chizmadia, L.J., Rubin, A.E., and Wasson, J.T. (2002) Mineralogy and petrology of amoeboid olivine inclusions in CO3 chondrites: relationship to parent-body aqueous alteration. Meteoritics & Planetary Sciences, 37, 1781–1796.10.1111/j.1945-5100.2002.tb01163.xSearch in Google Scholar

Clark, F.O., Buhl, D., and Snyder, L.E. (1974) Observational evidence for the excitation of HCN and H2O in protostellar molecular clouds. The Astrophysical Journal, 190, 545–556.10.1086/152909Search in Google Scholar

Cleland, C.E. (2011) Prediction and explanation in historical natural science. British Journal of the Philosophy of Science, 62, 551–582.10.1093/bjps/axq024Search in Google Scholar

Cleland, C.E. (2013) Common cause explanation and the search for the smoking gun. The Geological Society of America Special Paper, 502, 1–9. doi: 10.1130/2013.2502(01)10.1130/2013.2502(01)Search in Google Scholar

Collings, M.P., Dever, J.W., Fraser, H.J., McCoustra, M.R.S., and Williams, D.A. (2003) Carbon monoxide entrapment in interstellar ice analogs. The Astrophysical Journal, 583, 1058–1062.10.1086/345389Search in Google Scholar

Connolly, H.C. Jr., and Jones, R.H. (2016) Chondrules: The canonical and non-canonical views. Journal of Geophysical Research: Planets, 121, 1885–1899.10.1002/2016JE005113Search in Google Scholar

Connelly, J.N., Amelin, Y., Krot, A.N., and Bizzarro, M. (2008) Chronology of the solar system’s oldest solids. The Astrophysical Journal, 67, L121–L124.10.1086/533586Search in Google Scholar

Connelly, J.N., Bizzarro, M., Krot, A.N., Nordlund, Å., Wielandt, D., and Ivanova, M.A. (2012) The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science, 338, 651–655.10.1126/science.1226919Search in Google Scholar

Cronin, J.R., and Pizzarello, S. (1990) Aliphatic hydrocarbons of the Murchison meteorite. Geochimica et Cosmochimica Acta, 54, 2859–2868.10.1016/0016-7037(90)90020-LSearch in Google Scholar

Dana, J.D. (1850) A System of Mineralogy, Comprising the Most Recent Discoveries, Including Full Descriptions of Species and their Localities, Chemical Analyses and Formulas, Tables for the Determination of Minerals, and a Treatise on Mathematical Crystallography and the Drafting of Figures of Crystals. Third ed., Rewritten, Rearranged, and Enlarged. George P. Putnam.Search in Google Scholar

Daranlot, J., Hincelin, U., Bergeat, A., Costes, M., Loison, J.-C., Wakelam, V., and Hickson, K.M. (2012) Elemental nitrogen partitioning in dense interstellar clouds. Proceedings of the National Academy of Sciences, 109, 10,233–10,238. doi: 10.1073/pnas.1200017109.10.1073/pnas.1200017109Search in Google Scholar

Dartois, E., d’Hendecourt, L., Thi, W., Pontoppidan, K.M., and van Dishoeck, E.F. (2002) Combined VLT ISAAC/ISO SWS spectroscopy of two protostellar sources. Astronomy & Astrophysics, 394, 1057–1068.10.1051/0004-6361:20021228Search in Google Scholar

Davis, A.M., and Richter, F.M. (2014) Condensation and evaporation of solar system materials. In A.M. Davis, H.D. Holland, and K.K. Turekian, Eds., Treatise on Geochemistry, Vol. 1: Meteorites, Comets, and Planets, Second ed. pp.335–360. Elsevier-Pergamon.10.1016/B978-0-08-095975-7.00112-1Search in Google Scholar

Davis, A.M., Hashimoto, A., Clayton, R.N., and Mayeda, T.K. (1990) Isotope mass fractionation during evaporation of forsterite (Mg2SiO4 Nature, 347, 655–658.10.1038/347655a0Search in Google Scholar

Davis, A.M., MacPherson, G.J., Clayton, R.N., Mayeda, T.K., Sylvester, P.J., Grossman, L., Hinton, R.W., and Laughlin, J.R. (1991) Melt solidification and late-stage evaporation in the evolution of a FUN inclusion from the Vigarano C3V condrite. Geochimica et Cosmochimica Acta, 55, 621–637.10.1016/0016-7037(91)90016-XSearch in Google Scholar

Deer, W.A., Howie, R.A., and Zussman, J. (1963) Rock-Forming Minerals, vol. 2, Chain Silicates, p. 161–166. Wiley.Search in Google Scholar

Desch, S.J., and Connolly, H.C. Jr. (2002) A model for the thermal processing of particles in solar nebula shocks: Application to the cooling rates of chondrules. Meteoritics & Planetary Science, 37, 183–207.10.1111/j.1945-5100.2002.tb01104.xSearch in Google Scholar

Desch, S.J., and Cuzzi, J.N. (2000) The generation of lightning in the solar nebula. Icarus, 143, 87–105.10.1006/icar.1999.6245Search in Google Scholar

Desch, S.J., Morris, M.A., Connolly, H.C. Jr., and Boss, A.P. (2012) The importance of experiments: Constraints on chondrule formation models. Meteoritics & Planetary Science, 47, 1139–1156.10.1111/j.1945-5100.2012.01357.xSearch in Google Scholar

d’Hendecourt, L.B., and de Muizon, M.J. (1989) The discovery of interstellar carbon dioxide. Astronomy & Astrophysics, 223, L5–L8.Search in Google Scholar

d’Hendecourt, L., Jourdain de Muizon, M., Dartois, E., Breitfellner, M., Ehrenfreund, P., Benit, J., Boulanger, F., Puget, J.L., and Habing, H.J. (1996) ISO-SWS observations of solid state features towards RAFGL 7009S. Astronomy & Astrophysics, 315, L365–L368.Search in Google Scholar

Di Francesco, J., Evans, N.J. II, Caselli, P., Myers, P.C., Shirley, Y., Aikawa, Y., and Tafalla, M. (2006) An observational perspective of low-mass dense cores I: Internal physics and chemical properties. Protostars and Planets V, pp. 18–32. University of Arizona Press.Search in Google Scholar

Doukhan, N., Doukhan, J.C., and Poirier, J.P. (1991) Transmission electron microscopy of a refractory inclusion from the Allende meteorite: Anatomy of a pyroxene. Meteoritics, 26, 105–109.10.1111/j.1945-5100.1991.tb01025.xSearch in Google Scholar

Ebel, D.S. (2006) Condensation of rocky materials in astrophysical environments. In D.S. Lauretta and H.Y. McSween Jr., Eds., Meteorites and the Early solar system II, pp. 253–277. University of Arizona Press, Tucson.10.2307/j.ctv1v7zdmm.18Search in Google Scholar

Ebel, D.S., and Alexander, C.M.O’D. (2011) Equilibrium condensation from chondritic porous IDP enriched vapor: Implications for Mercury and enstatite chondrite origins. Planetary and Space Science, 59, 1888–1894.10.1016/j.pss.2011.07.017Search in Google Scholar

Ebel, D.S., and Grossman, L. (2000) Condensation in dust-rich systems. Geochimica et Cosmochimica Acta, 65, 469–477.10.1016/S0016-7037(00)00550-0Search in Google Scholar

Ehrenfreund, P., and Cami, J. (2010) Cosmic carbon chemistry: From the interstellar medium to early Earth. In D. Deamer and J.W. Szostak, Eds., Perspectives on the Origins of Life, pp. 1–14. Cold Spring Harbor Press.10.1101/cshperspect.a002097Search in Google Scholar

Ehrenfreund, P., and Charnley, S.B. (2000) Organic molecules in the interstellar medium, comets, and meteorites: A voyage from dark clouds to the early Earth. Annual Reviews in Astronomy and Astrophysics, 38, 427–483.10.1146/annurev.astro.38.1.427Search in Google Scholar

Ehrenfreund, P., and Fraser, H. (2003) Ice chemistry in space. In V. Pirronello, K. Krelowski, and G. Manico, Eds., Solid State Astrochemistry, pp. 317–356. Kluwer Academic Publishers.10.1007/978-94-010-0062-8_10Search in Google Scholar

Ehrenfreund, P., Robert, F., d’Hendecourt, L., and Behar, F. (1991) Comparison of interstellar and meteoritic organic matter at 3.4 microns. Astronomy & Astrophysics, 252, 712–717.Search in Google Scholar

Ehrenfreund, P., Boogert, A.C.A., Gerakines, P.A., Tielens, A.G.G.M., and van Dishoek, E.F. (1997) Infrared spectroscopy of interstellar apolar ice analogs. Astronomy & Astrophysics, 328, 649–669.Search in Google Scholar

El Goresy, A., Nagel, K., and Ramdohr, P. (1978) Fremdlinges and their noble relatives. Proceedings of the Lunar and Planetary Science Conference, 9, 1279–1303.Search in Google Scholar

El Goresy, A., Nagel, K., and Ramdohr, P. (1979) Spinel framboids and Fremdlinge in Allende inclusions: Possible sequential markers in the early history of the solar system. Proceedings of the Lunar and Planetary Science Conference, 10, 833–850.Search in Google Scholar

El Goresy, A., Palme, H., Yabuki, H., Nagel, K., Herrwerth, I., and Ramdohr, P. (1984) A calcium-aluminum inclusion from Essebi (CM2) chondrite: Evidence for captured spinel-hibonite spherules and for an ultra-refractory rimming sequence. Geochimica et Cosmochimica Acta, 48, 2283–2298.10.1016/0016-7037(84)90224-2Search in Google Scholar

El Goresy, A., Zinner, E., Matsunami, S., Palme, H., Spettel, B., Lin, Y., and Nazarov, M. (2002) Efremovka 101.1: A CAI with ultra-refractory REE patterns and enormous enrichments of Sc, Zr, and Y in fassaite and perovskite. Geochimica et Cosmochimica Acta, 66, 1459–1491.10.1016/S0016-7037(01)00854-7Search in Google Scholar

El Goresy, A., Boyer, M., and Miyahara, M. (2011) Almahata Sita MS-17 EL-3 chondrite fragment: contrasting oldhamite assemblages in chondrules and matrix and significant oldhamite REE-patterns. Meteoritics & Planetary Sciences, 46, Abstract 5079.Search in Google Scholar

Elsila, J., Allamandola, L.J., and Sandford, S.A. (1997) The 2140 cm–1 (4.673 microns) solid CO band: The case for interstellar O2 and N2 and the photochemistry of nonpolar interstellar ice analogs. The Astrophysical Journal, 479, 818–838.10.1086/303906Search in Google Scholar

Endress, M., Keil, K., Bischoff, A., Spettel, B., Clayton, R.N., and Mayeda, T.K. (1994) On the origin of dark clasts in Acfer 059/El Djouf 001 CR2 chondrite. Meteoritics, 29, 26–40.10.1111/j.1945-5100.1994.tb00650.xSearch in Google Scholar

Fagan, T.J., Krot, A.N., and Keil, K. (2000) Calcium–aluminum-rich inclusions in enstatite chondrites: I. Mineralogy and textures. Meteoritics & Planetary Science, 35, 771–781.10.1111/j.1945-5100.2000.tb01461.xSearch in Google Scholar

Fagan, T.J., McKeegan, K.D., Krot, A.N., and Keil, K. (2001) Calcium–aluminum-rich inclusions in enstatite chondrites: II. Oxygen isotopes. Meteoritics & Planetary Science, 36, 223–230.10.1111/j.1945-5100.2001.tb01866.xSearch in Google Scholar

Fahey, A.J., Zinner, E., Kurat, K., and Kracher, A. (1994) Hibonite-hercynite inclusions HH-1 from the Lance (CO3 meteorite: The history of an ultra-refractory inclusion CAI. Geochimica et Cosmochimica Acta, 58, 4779–4793.10.1016/0016-7037(94)90208-9Search in Google Scholar

Ferriere, D. (2001) The interstellar environment of our galaxy. Reviews of Modern Physics, 73, 1031–1066.10.1103/RevModPhys.73.1031Search in Google Scholar

Freeman, A., and Millar, T.J. (1983) Formation of complex molecules in TMC-1. Nature, 301, 402–404.10.1038/301402a0Search in Google Scholar

Fruchterman, T.M.J., and Reingold, E.M. (1991) Graph drawing by force-directed placement. Software: Practice and Experience, 21, 1129–1164.10.1002/spe.4380211102Search in Google Scholar

Fuchs, L.H. (1971) Occurrence of wollastonite, rhönite and andradite in the Allende meteorite. American Mineralogist, 56, 2053–2068.Search in Google Scholar

Fuchs, L.H. (1974) Grossular in the Allende (Type III carbonaceous) meteorite. Meteoritics, 9, 11–18.10.1111/j.1945-5100.1974.tb00058.xSearch in Google Scholar

Fuchs, L.H. (1978) The mineralogy of a rhönite-bearing calcium aluminum rich in the Allende meteorite. Meteoritics, 13, 73–88.10.1111/j.1945-5100.1978.tb00799.xSearch in Google Scholar

Fuentes-Landete, V., Mitterdorfer, C., Handle, P.H., Ruiz, G.N., Bernard, J., Bogdan, A., Seidl, M., Amann-Winkel, K., Stern, J., Fuhrmann, S., and Loerting, T. (2015) Crystalline and amorphous ices. Proceedings of the International School of Physics, 187. doi: 10.3254/978-1-61499-507-4-173.10.3254/978-1-61499-507-4-173Search in Google Scholar

Gaffney, E. S., and Matson, D.L. (1980) Water ice polymorphs and their significance on planetary surfaces. Icarus, 44, 511–519.10.1016/0019-1035(80)90041-XSearch in Google Scholar

Geiger, T., and Bischoff, A. (1995) Formation of opaque minerals in CK chondrites. Planetary & Space Science, 43, 485–498.10.1016/0032-0633(94)00173-OSearch in Google Scholar

Gerakines, P.A., Whittet, D.C.B., Ehrenfreund, P., Boogert, A.C.A., Tielens, A.G.G.M., Schutte, W.A., Chiar, J.E., van Dishoeck, E.F., Prusti, T., Helmich, F.P., and de Graauw, T. (1999) ISO-SWS observations of solid carbon dioxide in molecular clouds. The Astrophysical Journal, 522, 357–377.10.1086/307611Search in Google Scholar

Ghose, J., Methikkalam, R.R.J., Bhuin, R.G., Ragupathy, G., Choudhary, N., Kumar, R., and Pradeep, T. (2019) Clathrate hydrates in interstellar environment. Proceedings of the National Academy of Sciences, 116, 1526–1531.10.1073/pnas.1814293116Search in Google Scholar PubMed PubMed Central

Gibb, E.L., Whittet, D.C.B., Boogert, A.C.A., and Tielens, A.G.G.M. (2004) Interstellar ice: The Infrared Space Observatory legacy. The Astrophysical Journal Supplement Series, 151, 35–73.10.1086/381182Search in Google Scholar

Gillet, F.C., and Forrest, W.J. (1973) Spectra of the Becklin-Neugebauer point source and the Kleinmann-Low nebula from 2.8 to 13.5 microns. The Astrophysical Journal, 179, 483–491.10.1086/151888Search in Google Scholar

Gilmour, J.D., and Saxton, J.M. (2001) A time-scale of formation of the first solids. Philosophical Transactions of the Royal Society London, A, 359, 2037–2048.10.1098/rsta.2001.0895Search in Google Scholar

Greenberg, J.M. (1991) Interstellar dust-gas relationships. In M.M. Shapiro, R. Silberberg, and J.P. Wefel, Eds., Cosmic Rays, Supernovae, and the Interstellar Medium. NATO ASI Series: Mathematical and Physical Sciences, 120, 57–68.10.1007/978-94-011-3158-2_3Search in Google Scholar

Greenberg, J.M., Li, A., Mendoza-Gomez, C.X., Schutte, W.A., Gerakines, P.A., and de Groot, M. (1995) Approaching the interstellar grain organic refractory component. The Astrophysical Journal Letters, 455, L177–L180.10.1086/309834Search in Google Scholar

Greenwood, R.C., Hutchison, R., Huss, G.R., and Hutcheon, I.D. (1992) CAIs in CO3 meteorites: Parent body or nebular alteration? Meteoritics, 27, 229.10.1111/j.1945-5100.1992.tb01067.xSearch in Google Scholar

Greenwood, R.C., Lee, M.R., Hutchison, R., and Barber, D.J. (1994) Formation and alteration of CAIs in Cold Bokkeveld (CM2). Geochimica et Cosmochimica Acta, 58, 1913–1935.10.1016/0016-7037(94)90424-3Search in Google Scholar

Greshake, A., Bischoff, A., Putnis, A., and Palme, H. (1996) Corundum, rutile, periclase, and CaO in Ca,Al-rich inclusions from carbonaceous chondrites. Science, 272, 1316–1318.10.1126/science.272.5266.1316Search in Google Scholar

Grim, R. J.A., Bass, F., Geballe, T.R., Greenberg, J.M., and Schutte, W.A. (1991) Detection of solid methanol toward W33A. Astronomy & Astrophysics, 243, 473–477.Search in Google Scholar

Grishko, V.I., and Duley, W.W. (2000) Detection of new infrared spectral features in hydrogenated amorphous carbon. The Astrophysical Journal, 543, L85–L88.10.1086/318165Search in Google Scholar

Grokhovsky, V.I. (2006) Osbornite in CB/CH-like carbonaceous chondrite Isheyevo. Meteoritics & Planetary Science, 41, A68.Search in Google Scholar

Grossman, L. (1972) Condensation in the primitive solar nebula. Geochimica et Cosmochimica Acta, 36, 597–619.10.1016/0016-7037(72)90078-6Search in Google Scholar

Grossman, L. (1975) Petrography and mineral chemistry of Ca-rich inclusions in the Allende meteorite. Geochimica et Cosmochimica Acta, 39, 433–453.10.1016/0016-7037(75)90099-XSearch in Google Scholar

Grossman, L. (1980) Refractory inclusions in the Allende meteorite. Annual Reviews of Earth and Planetary Sciences, 8, 559–608.10.1146/annurev.ea.08.050180.003015Search in Google Scholar

Grossman, L., and Steele, I.M. (1976) Amoeboid olivine aggregates in the Allende meteorite. Geochimica et Cosmochimica Acta, 40, 149–155.10.1016/0016-7037(76)90172-1Search in Google Scholar

Grossman, L., Ganapathy, R., Methot, R.L., and Davis, A.M. (1979) Trace elements in the Allende meteorite amoeboid olivine aggregates. Geochimica et Cosmochimica Acta, 43, 817–829.10.1016/0016-7037(79)90221-7Search in Google Scholar

Grossman, J.N., Rubin, A.E., and MacPherson, G.J. (1988) ALH 85085: A unique volatile-poor carbonaceous chondrite with implications for nebular fractionation practices. Earth and Planetary Science Letters, 91, 33–54.10.1016/0012-821X(88)90149-5Search in Google Scholar

Grundy, W.M., and Schmitt, B. (1998) The temperature-dependent near-infrared absorption spectrum of hexagonal H2O ice. Journal of Geophysical Research, 103, 25809.10.1029/98JE00738Search in Google Scholar

Guan, Y., Huss, G.R., MacPherson, G.J., and Wasserburg, G.J. (2000) Calcium– aluminum-rich inclusions from enstatite chondrites: Indigenous or foreign? Science, 289, 1330–1333.10.1126/science.289.5483.1330Search in Google Scholar

Güsten, R., Wiesemeyer, H., Neufeld, D., Menten, K.M., Graf, U.U., Jacobs, K., Klein, B., Ricken, O., Risacher, C., and Stutzki, J. (2019) Astrophysical detection of the helium hydride ion HeH+ Nature, 568, 357–360.10.1038/s41586-019-1090-xSearch in Google Scholar

Hagen, W., Tielens, A.G.G.M., and Greenberg, J.M. (1981) The infrared spectra of amorphous solid water and ice between 10 and 140 K. Chemical Physics, 56, 367–379.10.1016/0301-0104(81)80158-9Search in Google Scholar

Han, J., Brearley, A.J., and Keller, L.P. (2015) Microstructural evidence for a disequilibrium condensation origin for hibonite-spinel inclusions in the ALHA77307 CO3.0 chondrite. Meteoritics & Planetary Science, 50, 2121–2136.10.1111/maps.12563Search in Google Scholar

Harries, D., Berg, T., Langenhorst, F., and Palme, H. (2012) Structural clues to the origin of refractory metal alloys as condensates of the solar nebula. Meteoritics & Planetary Sciences, 47, 2148–2159.10.1111/j.1945-5100.2012.01424.xSearch in Google Scholar

Hashimoto, A. (1983) Evaporation metamorphism in the early solar nebula— evaporation experiments on the melt FeO-MgO-SiO2-CaO-Al2O3 and chemical fractionations of primitive materials. Geochemical Journal, 17, 111–145.10.2343/geochemj.17.111Search in Google Scholar

Hashimoto, A. (1992) The effect of H2O gas on volatilities of planet-forming major elements: I. Experimental determination of thermodynamic properties of C-, Al-, and Si-hydroxide gas molecules, and its application to the solar nebula. Geochimica et Cosmochimica Acta, 56, 511–532.10.1016/0016-7037(92)90148-CSearch in Google Scholar

Hashimoto, A., and Grossman, L. (1987) Alteration of Al-rich inclusions inside amoeboid olivine aggregates in the Allende meteorite. Geochimica et Cosmo-chimica Acta, 51, 1685–1704.10.1016/0016-7037(87)90348-6Search in Google Scholar

Hazen, R.M. (1989) A farewell to obsolete pyroxenes. The Lattice, February, 1989, 6–7.Search in Google Scholar

Hazen, R.M. (2018) Titan mineralogy: A window on organic mineral evolution. American Mineralogist, 103, 341–342.10.2138/am-2018-6407Search in Google Scholar

Hazen, R.M. (2019) An evolutionary system of mineralogy: Proposal for a classification based on natural kind clustering. American Mineralogist, 104, 810–816.10.2138/am-2019-6709CCBYNCNDSearch in Google Scholar

Hazen, R.M., and Ferry, J.M. (2010) Mineral evolution: Mineralogy in the fourth dimension. Elements, 6, 1, 9–12.10.2113/gselements.6.1.9Search in Google Scholar

Hazen, R.M., and Morrison, S.M. (2020) An evolutionary system of mineralogy. Part I: Stellar mineralogy (>13 to 4.6 Ga). American Mineralogist, 105, 627–651.10.2138/am-2020-7173Search in Google Scholar

Hazen, R.M., Papineau, D., Bleeker, W., Downs, R. T., Ferry, J.M., McCoy, T.L., Sverjensky, D.A., and Yang, H. (2008) Mineral evolution. American Mineralogist, 93, 1693–1720.10.2138/am.2008.2955Search in Google Scholar

Hazen, R.M., Sverjensky, D.A., Azzolini, D., Bish, D.L., Elmore, S.C., Hinnov, L., and Milliken, R.E. (2013) Clay mineral evolution. American Mineralogist, 98, 2007–2029.10.2138/am.2013.4425Search in Google Scholar

Hazen, R.M., Downs, R.T., Elesish, A., Fox, P., Gagné, O., Golden, J.J., Grew, E.S., Hummer, D.R., Hystad, G., Krivovichev, S.V., and others. (2019) Data-driven discovery in mineralogy: Recent advances in data resources, analysis, and visualization. China Engineering, 5, 397–405.10.1016/j.eng.2019.03.006Search in Google Scholar

Henning, T., and Salama, E. (1998) Carbon in the universe. Science, 282, 2204–2210.10.1126/science.282.5397.2204Search in Google Scholar

Henning, T., Jager, C., and Mutschke, H. (2004) Laboratory studies on carbonaceous dust. In A.N. Witt, G.C. Clayton, and B.T. Draine, Eds., Astrophysics of Dust. ASP Conference Series, 309, 603–628.Search in Google Scholar

Herbst, E. (1995) Chemistry in the interstellar medium. Annual Review of Physical Chemistry, 46, 27–54.10.1146/annurev.pc.46.100195.000331Search in Google Scholar

Herbst, E., and Klemperer, W. (1973) The formation and depletion of molecules in dense interstellar clouds. The Astrophysical Journal, 185, 505–533.10.1086/152436Search in Google Scholar

Hinton, R.W., Davis, A.M., Scalena-Wachel, D.E., Grossman, L., and Draus, R.J. (1988) A chemical and isotopic study of hibonite-rich refractory inclusions in primitive meteorites. Geochimica et Comsochimica Acta, 52, 2573–2598.10.1016/0016-7037(88)90028-2Search in Google Scholar

Hobbs, P.V. (1974) Ice Physics. Oxford University Press.Search in Google Scholar

Hollenbach, D., Kaufman, M.J., Bergin, E.A., and Melnick, G.J. (2009) Water, O2 and ice in molecular clouds. The Astrophysical Journal, 690, 1497–1521.10.1088/0004-637X/690/2/1497Search in Google Scholar

Holmberg, A.A., and Hashimoto, H. (1992) A unique (almost) unaltered spinel-rich fine-grained inclusion in Kainsaz. Meteoritics, 27, 149–153.10.1111/j.1945-5100.1992.tb00742.xSearch in Google Scholar

Hubbard, A., McNally, C.P., and MacLow, M.-M. (2012) Short circuits in thermally ionized plasmas: A mechanism for intermittent heating of protoplanetary disks. The Astrophysical Journal, 761, 58–67.10.1088/0004-637X/761/1/58Search in Google Scholar

Ichikawa, O., and Ikeda, Y. (1995) Petrology of the Yamato-8559 CR chondrite. Proceedings of the NIPR Symposium on Antarctic Meteorites, 8, 63–78.Search in Google Scholar

Ihinger, P.D., and Stolper, E. (1986) The color of meteoritic hibonite: An indicator of oxygen fugacity. Earth and Planetary Science Letters, 78, 67–79.10.1016/0012-821X(86)90173-1Search in Google Scholar

Iida, A., Nakamoto, T., Susa, H., and Nakagawa, Y. (2001) A shock model for chondrule formation in a protoplanetary disk. Icarus, 153, 430–450.10.1006/icar.2001.6682Search in Google Scholar

Ikeda, Y. (1992) An overview of the research consortium, “Antarctic carbonaceous chondrites with CI affinities,” Yamato-86720, Yamato-82162, and Belgica-7904. Proceedings of the NIPR Symposium on Antarctic Meteorites, 5, 49–73.Search in Google Scholar

Ireland, T.R. (1988) Correlated morphological, chemical, and isotopic characteristics of hibonites from the Murchison carbonaceous chondrite. Geochimica et Cosmochimica Acta, 52, 2827–2839.10.1016/0016-7037(88)90150-0Search in Google Scholar

Ireland, T.R., Fahey, A.J., and Zinner, E.K. (1988) Trace element abundances in hibonites from the Murchison carbonaceous chondrite: Constraints on high-temperature processes in the solar nebula. Geochimica et Cosmochimica Acta, 52, 2841–2854.10.1016/0016-7037(88)90151-2Search in Google Scholar

Ivanova, M.A., Petaev, M.I., MacPherson, G.J., Nazarov, M.A., Taylor, L.A., and Wood, J.A. (2002) The first known natural occurrence of CaAl2O4 in a Ca– Al-rich inclusion from the CH chondrite NWA470. Meteoritics & Planetary Science, 37, 1337–1344.10.1111/j.1945-5100.2002.tb01032.xSearch in Google Scholar

Jambon, A., and Boudouma, O. (2011) Evidence for rhönite in angrites D’Orbigny and Sahara 99555. 74th Annual Meeting of the Meteoritical Society, Meteoritics & Planetary Science Supplement, id.5167 (Sept 2011).Search in Google Scholar

Jeans, J.H. (1902) The stability of a spherical nebula. Philosophical Transactions of the Royal Society A, 199, 1–53.Search in Google Scholar

Jenniskens, P., and Blake, D.F. (1994) Structural transitions in amorphous water ice and astrophysical implications. Science, 265, 753–756.10.1126/science.11539186Search in Google Scholar PubMed

Jenniskens, P., and Blake, D.F. (1996) Crystallization of amorphous water ice in the solar system. The Astrophysical Journal, 473, 1104–1113.10.1086/178220Search in Google Scholar PubMed

Jordan, K.D. (2019) Smallest water clusters supporting the ice I structure. Proceedings of the National Academy of Sciences, 116, 24383–24385.10.1073/pnas.1918178116Search in Google Scholar

Joung, R.M.K., MacLow, M.M., and Ebel, D.S. (2004) Chondrule formation and protoplanetary disk heating by current sheets in nonideal magnetohydrodynamic turbulence. The Astrophysical Journal, 606, 532–541.10.1086/381651Search in Google Scholar

Keil, K., and Fuchs, L.H. (1971) Hibonite from the Leoville and Allende chondritic meteorites. Earth and Planetary Science Letters, 12, 184–190.10.1016/0012-821X(71)90076-8Search in Google Scholar

Keller, L.P., and Buseck, P.R. (1994) Twinning in meteoritic and synthetic perovskite. American Mineralogist, 79, 73–79.Search in Google Scholar

Kerridge, J.F. (1983) Isotopic composition of carbonaceous-chondrite kerogen: Evidence for an interstellar origin of organic matter in meteorites. Earth and Planetary Science Letters, 64, 186–200.10.1016/0012-821X(83)90203-0Search in Google Scholar

Kimura, M., El Goresy, A., Palme, H., and Zinner, E. (1993) Ca-Al-rich inclusions in the unique chondrite ALH85085: Petrology, chemistry, and isotopic compositions. Geochimica et Cosmochimica Acta, 57, 2329–2359.10.1016/0016-7037(93)90573-FSearch in Google Scholar

Kimura, M., Mikouchi, T., Suzuki, A., Miyahara, M., Ohtani, E., and El Goresy, A. (2006) Kushiroite, CaAlAlSiO6 A new mineral of the pyroxene group from the ALH 85085 CH chondrite, and its genetic significance in refractory inclusions. American Mineralogist, 94, 1479–1482.10.2138/am.2009.3242Search in Google Scholar

Klöck, W., Thomas, K.L., McKay, D.S., and Palme, H. (1989) Unusual olivine and pyroxene compositions in interplanetary dust and unequilibrated ordinary chondrites. Nature, 339, 126–128.10.1038/339126a0Search in Google Scholar

Knauth, D.C., Andersson, B.-G., McCandliss, S.R., and Moos, H.W. (2004) The interstellar N2 abundance towards HD 124314 from far-ultraviolet observations. Nature, 429, 636–638.10.1038/nature02614Search in Google Scholar PubMed

Kojima, T., Yada, S., and Tomeoka, K. (1995) Ca-Al-rich inclusion in three Antarctic CO3 chondrites, Y-81020, Yamato-82050 and Yamato-790992: Record of low temperature alteration processes. Proceedings of the NIPR Symposium on Antarctic Meteorites, 8, 79–86.Search in Google Scholar

Komatsu, M., Fagan, T.J., Krot, A.N., Nagashima, K., Petaev, M.I., Kimura, M., and Yamaguchi, A. (2018) First evidence for silica condensation within the solar protoplanetary disk. Proceedings of the National Academy of Sciences, 115, 7497–7502.10.1073/pnas.1722265115Search in Google Scholar PubMed PubMed Central

Kööp, L., Nakashima, D., Heck, P.R., Kita, N.T., Tenner, T.J., Krot, A.N., Nagashima, K., Park, C., and Davis, A.M. (2016a) New constraints on the relationship between 26Al and oxygen, calcium, and titanium isotopic variation in the early solar system from a multielement isotopic study of spinel-hibonite inclusions. Geochimica et Cosmochimica Acta, 184, 151–172.10.1016/j.gca.2016.04.018Search in Google Scholar

Kööp, L., Davis, A.M., Nakashima, D., Park, C., Krot, A.N., Nagashima, K., Temmer, T.J., Heck, P.R., and Kita, N.T. (2016b) A link between oxygen, calcium and titanium isotopes in 26Al-poor hibonite-rich CAIs from Murchison and implications for the heterogeneity of dust reservoirs in the solar nebula. Geochimica et Cosmochimica Acta, 189, 70–95.10.1016/j.gca.2016.05.014Search in Google Scholar

Kööp, L., Heck, P.R., Busemann, H., Davis, A.M., Greer, J., Maden, C., Meier, M.M.M., and Wieler, R. (2018) High early solar activity inferred from helium and neon excess in the oldest meteorite inclusions. Nature Astronomy, 2, 709–713.10.1038/s41550-018-0527-8Search in Google Scholar

Kornacki, A.S., and Wood, J.A. (1984) Petrography and classification of Ca,Al-rich and olivine-rich inclusions in the Allende CV3 chondrite. Proceedings of the Lunar and Planetary Science Conference, 14, B573–B587.10.1029/JB089iS02p0B573Search in Google Scholar

Kornacki, A.S., and Wood, J.A. (1985) The identification of Group II inclusions in carbonaceous chondrites by electron microprobe analysis of perovskite. Earth and Planetary Science Letters, 72, 74–86.10.1016/0012-821X(85)90118-9Search in Google Scholar

Kouchi, A. (1987) Vapour pressure of amorphous H2O ice and its astrophysical implications. Nature, 330, 550–552.10.1038/330550a0Search in Google Scholar

Kouchi, A. (1990) Evaporation of H2O-CO ice and its astrophysical implications. Journal of Crystal Growth, 99, 1220–1226.10.1016/S0022-0248(08)80112-1Search in Google Scholar

Kouchi, A., and Kuroda, T. (1990) Amorphization of cubic ice by ultraviolet irradiation. Nature, 344, 134–135.10.1038/344134a0Search in Google Scholar

Kouchi, A., and Yamamoto, T. (1995) Cosmoglaciology: Evolution of ice in interstellar space and the early solar system. Progress in Crystal Growth and Characterization of Materials, 30, 83–107.10.1016/0960-8974(95)00005-RSearch in Google Scholar

Kouchi, A., Yamamoto, T., Kozasa, T., Kuroda, T., and Greenberg, J.M. (1994) Conditions for condensation and preservation of amorphous water ice and crystallinity of astrophysical ices. Astronomy & Astrophysics, 290, 1009–1018.Search in Google Scholar

Krivovichev, S.V. (2012) Topological complexity of crystal structures: quantitative approach. Acta Crystallographica, A68, 393–398.10.1107/S0108767312012044Search in Google Scholar PubMed

Krivovichev, S.V. (2013) Structural complexity of minerals: information storage and processing in the mineral world. Mineralogical Magazine, 77, 275–326.10.1180/minmag.2013.077.3.05Search in Google Scholar

Krot, A.N. (2019) Refractory inclusions in carbonaceous chondrites: Records of early solar systems processes. Meteoritics & Planetary Science, 54, 1647–1691.10.1111/maps.13350Search in Google Scholar PubMed PubMed Central

Krot, A.N., Petaev, M.I., Russell, S.S., Itoh, S., Fagan, T.J., Yurimoto, H., Chizmadia, L., Weisberg, M.K., Komatsu, M., Ulyanov, A.A., and Keil, K. (2004) Amoeboid olivine aggregates and related objects in carbonaceous chondrites: records of nebular and asteroid processes. Chemie der Erde Geochemistry, 64, 185–239.10.1016/j.chemer.2004.05.001Search in Google Scholar

Krot, A.N., Ulyanov, A.A., and Ivanova, M.A. (2006) Refractory inclusions and aluminum-rich chondrules in the CB/CH-like carbonaceous chondrite Isheyevo. Proceedings of the Lunar and Planetary Science Conference, 37, 1226.Search in Google Scholar

Krot, A.N., Keil, K., Scott, E.R.D., Goodrich, C.A., and Weisberg, M.K. (2014) Classification of meteorites and their genetic relationships. In A.M. Davis, Ed., Treatise on Geochemistry (2nd ed.), vol. 1, pp. 1–63. Elsevier.10.1016/B978-0-08-095975-7.00102-9Search in Google Scholar

Krot, A.N., Ma, C., Nagashima, K., Davis, A.M., Beckett, J.R., Simon, S.B., Komatsu, M., Fagan, T.J., Brenker, F., Ivanova, M.A., and Bischoff, A. (2019) Mineralogy, petrology, and oxygen isotopic compositions of ultra-refractory inclusions from carbonaceous chondrites. Geochemistry, 79, 125519 (29 pp.).10.1016/j.chemer.2019.07.001Search in Google Scholar

Krot, A.N., Nagashima, K., and Rossman, G.R. (2020) Machiite, Al2Ti3O9 a new oxide mineral from the Murchison carbonaceous chondrite: A new ultra-refractory phase from the solar nebula. American Mineralogist, 105, 239–243.10.2138/am-2020-7185Search in Google Scholar

Lacy, J.H., Carr, J.S., Evans, N.J. II, Baas, F., Achtermann, J.M., and Arens, J.F. (1991) Discovery of interstellar methane: Observations of gaseous and solid CH4 absorption toward young stars in molecular clouds. The Astrophysical Journal, 376, 556–560.10.1086/170304Search in Google Scholar

Lattimer, J.M., Schramm, D.N., and Grossman, L. (1978) Condensation in supernova ejecta and isotopic anomalies in meteorites. The Astrophysical Journal, 219, 230–249.10.1086/155771Search in Google Scholar

Léger, A., Gauthier, S. Defourneau, D., and Rouan, D. (1983) Properties of amorphous H2O ice and origin of the 3.1 micron absorption. Astronomy & Astrophysics, 117, 164–169.Search in Google Scholar

Lin, Y., El Goresy, A., Boyer, M., Feng, L., Zhang, J., and Hao, J. (2011) Earliest solid condensates consisting of the assemblage oldhamite, sinoite, graphite and excess 36S in lawrencite from Almahata Sitta MS-17 EL3 chondrite. Workshop on Formation of the First Solids in the solar system, Abstract 9040.Search in Google Scholar

Liu, M.-C., McKeegan, K.D., Goswami, J.N., Marhas, K.K., Sahijpal, S., Ireland, T.R., and Davis, A.M. (2009) Isotopic records in CM hibonites: Implications for timescales of mixing of isotope reservoirs in the solar nebula. Geochimica et Cosmochimica Acta, 73, 5051–5079.10.1016/j.gca.2009.02.039Search in Google Scholar

Lodders, K. (2003) Solar system abundances and condensation temperatures of the elements. The Astrophysical Journal, 591, 1220–1247.10.1086/375492Search in Google Scholar

Longair, M.S. (2008) Galaxy Formation, Second edition. Springer.Search in Google Scholar

Luhman, K.L., Allen, P.R., Espaillat, C., Hartmann, L., and Calvet, N. (2010) The disk population of the Taurus star-forming region. The Astrophysical Journal Supplement Series, 186, 111–174.10.1088/0067-0049/186/1/111Search in Google Scholar

Ma, C. (2011) Discovery of meteoritic lakargiite (CaZrO3 a new ultra-refractory mineral from the Acfer 094 carbonaceous chondrite. Proceedings of the Annual Meeting of the Meteoritical Society, 74, 5169.Search in Google Scholar

Ma, C. (2012) Discovery of meteoritic eringaite, Ca3(Sc,Y,Ti)2Si3O12 the first solar garnet? Meteoritics & Planetary Science, 47, A256.Search in Google Scholar

Ma, C. (2018) Discovery of meteoritic baghdadite, Ca3(Zr,Ti)Si2O9 in Allende: The first solar silicate with structurally essential zirconium? Meteoritics & Planetary Science, 53 (S1), Abstract No. 6358.Search in Google Scholar

Ma, C. (2019) Discovery of kaitianite, Ti23+Ti4+O5 in Allende: A new refractory mineral from the solar nebula. Proceedings of the Annual Meeting of the Meteoritical Society, 82, 6098.Search in Google Scholar

Ma, C., and Beckett, J.R. (2016) Burnettite, CaVAlSiO6 and paqueite, Ca3TiSi2(Al2Ti)O14 two new minerals from Allende: Clues to the evolution of a V-rich Ca-Al-inclusion. Proceedings of the Lunar and Planetary Science Conference, 47, 1595.Search in Google Scholar

Ma, C., and Rossman, G.R. (2008) Discovery of tazheranite (cubic zirconia) in the Allende meteorite. Geochimica et Cosmochimica Acta, 72, A577.Search in Google Scholar

Ma, C., and Rossman, G.R. (2009a) Grossmanite, CaTi3+AlSiO6 a new pyroxene from the Allende meteorite. American Mineralogist, 94, 1491–1494.10.2138/am.2009.3310Search in Google Scholar

Ma, C., and Rossman, G.R. (2009b) Davisite, CaScAlSiO6 a new pyroxene from the Allende meteorite. American Mineralogist, 94, 845–848.10.2138/am.2009.3209Search in Google Scholar

Ma, C., and Rossman, G.R. (2009c) Tistarite, Ti2O3 a new refractory mineral from the Allende meteorite. American Mineralogist, 94, 841–844.10.2138/am.2009.3203Search in Google Scholar

Ma, C., and Rubin, A.E. (2019) Edscottite, Fe5C2 a new iron carbide mineral from the Ni-rich Wedderburn IAB iron meteorite. American Mineralogist, 104, 1351–1355.10.2138/am-2019-7102Search in Google Scholar

Ma, C., Beckett, J.R., Rossman, G.R., Connolly, H.C. Jr., Guan, Y., Eiler, J.M., and Hofmann, A.E. (2009a) In-situ discovery of a cluster of refractory grains in an Allende ferromagnesiam chondrule. Proceedings of the Lunar and Planetary Science Conference, 40, 2138.Search in Google Scholar

Ma, C., Simon, S.B., Rossman, G.R., and Grossman, L. (2009b) Calcium Tschermak’s pyroxene, CaAlAlSiO6 from the Allende and Murray meteorites: EBSD and micro-Raman characterizations. American Mineralogist, 94, 1483–1486.10.2138/am.2009.3231Search in Google Scholar

Ma, C., Beckett, J.R., Tschauner, O., and Rossman, G.R. (2011a) Thortveitite (Sc2Si2O7 the first solar silicate? Proceedings of the Annual Meeting of the Meteoritical Society, 74, 5171.Search in Google Scholar

Ma, C., Kampf, A.R., Connolly, H.C. Jr., Beckett, J.R., Rossman, G.R., Sweeney Smith, S.A., and Schrader, D.L. (2011b) Krotite, CaAl2O4 a new refractory mineral from the NWA 1934 meteorite. American Mineralogist, 96, 709–715.10.2138/am.2011.3693Search in Google Scholar

Ma, C., Tschauner, O., Beckett, J.R., Rossman, G.R., and Liu, W. (2012) Panguite, (Ti4+Sc,Al,Mg,Zr,Ca)1.8O3 a new ultra-refractory titania mineral from the Allende meteorite: synchrotron micro-diffraction and EBSD. American Mineralogist, 97, 1219–1225.10.2138/am.2012.4027Search in Google Scholar

Ma, C., Krot, A.N., and Bizzarro, M. (2013a) Discovery of dmisteinbergite (hexagonal CaAl2Si2O8 in the Allende meteorite: A new member of refractory silicates formed in the solar nebula. American Mineralogist, 98, 1368–1371.10.2138/am.2013.4496Search in Google Scholar

Ma, C., Tschauner, O., Beckett, J.R., Rossmann, G.R., and Liu, W. (2013b) Kangite, (Sc,Ti,Al,Zr,Mg,Ca,o)2O3 a new ultra-refractory scandia mineral from the Allende meteorite: Synchrotron micro-Laue diffraction and electron backscatter diffraction. American Mineralogist, 98, 870–878.10.2138/am.2013.4290Search in Google Scholar

Ma, C., Beckett, J.R., and Rossman, G.R. (2014a) Allendeite (Sc4Zr3O12 and hexamolybdenum (Mo,Ru,Fe), two new minerals from an ultra-refractory inclusion from the Allende meteorite. American Mineralogist, 99, 654–666.10.2138/am.2014.4667Search in Google Scholar

Ma, C., Beckett, J.R., and Rossman, G.R. (2014b) Monipite, MoNiP, a new phosphide mineral in a Ca-Al-rich inclusion from the Allende meteorite. American Mineralogist, 99, 198–205.10.2138/am.2014.4512Search in Google Scholar

Ma, C., Krot, A.N., Beckett, J.R., Nagashima, K., and Tschauner, O. (2015) Discovery of warkite, Ca2Sc6Al6O20 a new Sc-rich ultra-refractory mineral in Murchison and Vigarano. Proceedings of the Annual Meeting of the Meteoritical Society, 78, 5025.Search in Google Scholar

Ma, C., Yoshizaki, T., Krot, A.N., Beckett, J.R., Nakamura, T., Nagashima, K., Muto, J., and Ivanova, M.A. (2017a) Discovery of rubinite, Ca3Ti23+Si3O12 a new garnet mineral in refractory inclusions from carbonaceous chondrites. Proceedings of the Annual Meeting of the Meteoritical Society, 80, 6023.Search in Google Scholar

Ma, C., Krot, A.N., and Nagashima, K. (2017b) Addibischoffite, Ca2Al6Al6O20 a new calcium aluminate mineral from the Acfer 214 CH carbonaceous chondrite: A new refractory phase from the solar nebula. American Mineralogist, 102, 1556–1560.10.2138/am-2017-6032Search in Google Scholar

Macdougall, J.D. (1979) Refractory-element-rich inclusions in C2 meteorites. Earth and Planetary Science Letters, 42, 1–6.10.1016/0012-821X(79)90184-5Search in Google Scholar

Macdougall, J.D. (1981) Refractory spherules in the Murchison meteorite: Are they chondrules? Geophysical Research Letters, 8, 966–969.10.1029/GL008i009p00966Search in Google Scholar

MacPherson, G.J. (2014) Calcium-aluminum-rich inclusions in chondritic meteorites. In A.M. Davis, H.D. Holland, and K.K. Turekian, Eds., Treatise on Geochemistry, Vol. 1: Meteorites, Comets, and Planets, Second edition. pp. 139–179. Elsevier-Pergamon.10.1016/B978-0-08-095975-7.00105-4Search in Google Scholar

MacPherson, G.J., and Davis, A.M. (1993) A petrologic and ion microprobe study of a Vigarano Type B2 refractory inclusion: Evolution by multiple stages of melting and alteration. Geochimica et Cosmochimica Acta, 57, 231–243.10.1016/0016-7037(93)90481-BSearch in Google Scholar

MacPherson, G.J., and Davis, A.M. (1994) Refractory inclusions in the prototypical CM chondrite, Mighei. Geochimica et Cosmochimica Acta, 58, 5599–5625.10.1016/0016-7037(94)90253-4Search in Google Scholar

MacPherson, G.J., and Grossman, L. (1984) Fluffy Type-A inclusions in the Allende meteorite. Geochimica et Cosmochimica Acta, 48, 29–46.10.1016/0016-7037(84)90347-8Search in Google Scholar

MacPherson, G.J., Grossman, L., Allen, J.M., and Beckett, J.R. (1981) Origin of rims on coarse-grained inclusions in the Allende meteorite. Proceedings of the Lunar and Planetary Science Conference, 12, 1079–1091.Search in Google Scholar

MacPherson, G.J., Bar-Matthews, M., Tanaka, T., Olsen, E., and Grossman, L. (1983) Refractory inclusions in the Murchison meteorite. Geochimica et Cosmochimica Acta, 47, 823–839.10.1016/0016-7037(83)90116-3Search in Google Scholar

MacPherson, G.J., Paque, J.M., Stolper, E., and Grossman, L. (1984) The origin and significance of reverse zoning in melilite from Allende Type B inclusions. Journal of Geology, 92, 289–305.10.1086/628861Search in Google Scholar

MacPherson, G.J., Wark, D.A., and Armstrong, J.T. (1988) Primitive material surviving in chondrites: refractory inclusions. In J.F. Kerridge and M.S. Matthews, M.S., Eds., Meteorites and the Early solar system, p. 746–807. University of Arizona Press.Search in Google Scholar

MacPherson, G.J., Huss, G.R., and Davis, A.M. (2003) Extinct 10Be in Type A CAIs from CV chondrites. Geochimica et Cosmochimica Acta, 67, 3165–3179.10.1016/S0016-7037(02)01298-XSearch in Google Scholar

Mai, C., Desch, S.J., Boley, A.C., and Weiss, B.P. (2018) Magnetic fields recorded by chondrules formed in nebular shocks. The Astrophysical Journal, 857, 96 (13 pp.).10.3847/1538-4357/aab711Search in Google Scholar

Mann, C.R., Boley, A.C., and Morris, M.A. (2016) Planetary embryo bow shocks as a mechanism for chondrule formation. The Astrophysical Journal, 818, 103–123.10.3847/0004-637X/818/2/103Search in Google Scholar

Mao, X.Y., Ward, B.J., Grossman, L., and MacPherson, G.J. (1990) Chemical compositions of refractory inclusions from the Vigarano and Leoville carbonaceous chondrites. Geochimica et Cosmochimica Acta, 54, 2121–2132.10.1016/0016-7037(90)90275-PSearch in Google Scholar

Maret, S., Bergin, E.A., and Lada, C.J. (2006) A low fraction of nitrogen in molecular form in a dark cloud. Nature, 442, 425–427.10.1038/nature04919Search in Google Scholar

Massalkski, T.B., Park, F.R., and Vassalmillet, L.F. (1966) Speculations about plessite. Geochimica et Cosmochimica Acta, 30, 649–662.10.1016/0016-7037(66)90095-0Search in Google Scholar

Maynard-Casely, H.E., Cable, M.L., Malaska, M.J., Vu, T.H., Choukroun, M., and Hodyss, R. (2018) Prospects for mineralogy on Titan. American Mineralogist, 103, 343–349.10.2138/am-2018-6259Search in Google Scholar

McKeegan, K.D., Leshin, L.A., Russell, S.S., and MacPherson, G.J. (1998) Oxygen isotope abundances in calcium-aluminum-rich inclusions from ordinary chondrites: implications for nebular heterogeneity. Science, 280, 414–418.10.1126/science.280.5362.414Search in Google Scholar

McKeegan, K.D., Chaussidon, M., and Robert, F. (2000) Incorporation of short-lived 10Be in a calcium-aluminum-rich inclusion from the Allende meteorite. Science, 289, 1334–1337.10.1126/science.289.5483.1334Search in Google Scholar

Mendybaev, R.A., Richter, F.M., Georg, R.B., and Davis, A.M. (2009) Evaporation kinetics of forsterite-rich melts and thermal histories of FUN CAIs. Proceedings of the Lunar and Planetary Science Conference, 40, 2461.Search in Google Scholar

Michel-Lévy, M.C., Kurat, G., and Brandstätter, F. (1982) A new calcium aluminate from a refractory inclusion in the Leoville carbonaceous chondrite. Earth and Planetary Science Letters, 61, 13–22.10.1016/0012-821X(82)90033-4Search in Google Scholar

Mikouchi, T., Zolensky, M., Ivanova, M., Tachikawa, O., Komatsu, M., Le, L., and Gounelle, M. (2009) Dmitryivanovite: A new high-pressure calcium aluminate from the Northwest Africa 470 CH3 chondrite characterized using electron backscatter diffraction analysis. American Mineralogist, 94, 746–750.10.2138/am.2009.3080Search in Google Scholar

Mills, S.J., Hatert, F., Nickel, E.H., and Ferrais, G. (2009) The standardization of mineral group hierarchies: Application to recent nomenclature proposals. European Journal of Mineralogy, 21, 1073–1080.10.1127/0935-1221/2009/0021-1994Search in Google Scholar

Mizuno, A., Onishi, T., Hayashi, M., Ohashi. N., Sunada, K., Hasegawa, T., and Fukul, Y. (1994) Molecular cloud condensation as a tracer of low-mass star formation. Nature, 368, 719–721.10.1038/368719a0Search in Google Scholar

Moberg, D.R., Becker, D., Dierking, C.W., Zurheide, F., Bandow, B., Buck, U., Hudait, A., Molinero, V., Paesani, F., and Zeuch, T. (2019) The end of ice I. Proceedings of the National Academy of Sciences, 116, 24,413–24,419.10.1073/pnas.1914254116Search in Google Scholar

Moggi-Cecchi, V., Pratesi, G., Salvadori, A., Franchi, I.A., and Greenwood, R.C. (2007) Textural and minerochemical features of NWA 1807 and 2180, two new CV3 chondrites from Northwest Africa. Lunar and Planetary Science Conference, 38, 2338.Search in Google Scholar

Moore, M.H., and Hudson, R.L. (1992) Far-infrared spectral studies of phase changes in water ice induced by proton radiation. The Astrophysical Journal, 401, 353.10.1086/172065Search in Google Scholar

Morimoto, N., Fabries, J., Ferguson, A.K., Ginzburg, I.V., Ross, M., Seifert, F.A., Zussman, J., Aoki, K., and Gottardi, G. (1988) Nomenclature of pyroxenes. American Mineralogist, 73, 1123–1133.Search in Google Scholar

Morrison, S.M., Liu, C., Eleish, A., Prabhu, A., Liu, C., Ralph, J., Downs, R.T., Golden, J.J., Fox, P., Hummer, D.R., Meyer, M.B., and Hazen, R.M. (2017) Network analysis of mineralogical systems. American Mineralogist, 102, 1588–1596.10.2138/am-2017-6104CCBYNCNDSearch in Google Scholar

Morrison, S.M., Downs, R.T., Eleish, A., Fox, P., Hummer, D.R., Hystad, G., Golden, J.J., Liu, C., Prabhu, A., Zahirovic, S., and Hazen, R.M. (2020) Visualizing carbon minerals: Recent advances in C mineral evolution, mineral ecology, and network analysis. Frontiers in Earth Sciences, in press, DOI: 10.3389/feart.2020.00208.10.3389/feart.2020.00208Search in Google Scholar

Mukai, T. (1986) Analysis of a dirty water-ice model for cometary dust. Astronomy & Astrophysics, 164, 397–407.Search in Google Scholar

Mysen, B.O., and Kushiro, I. (1988) Composition, evaporation, melting and crystallization in the primitive solar nebula: Experimental data in the system MgO-SiO2-H2 to 1.0 × 10–9 bar and 1870 °C with variable oxygen fugacity. American Mineralogist, 73, 1–19.Search in Google Scholar

Mysen, B.O., Virgo, D., and Kushiro, I. (1985) Experimental studies at low pressures and high temperatures: Phase equilibra in the system CaMgSi2O6—H2 in the temperature range 1200°-1500°C and the pressure range (PH2) 10–6 to 10–9 bar. Earth and Planetary Science Letters, 75, 139–147.10.1016/0012-821X(85)90096-2Search in Google Scholar

Nagahara, H. (1982) Fe-Ni metals in the type 3 ordinary chondrites. Symposium on Antarctic Meteorites, NIPR special Issue, 20, 86–96.Search in Google Scholar

Nagahara, H., Kushiro, I., and Mysen, B.O. (1993) Vaporization and condensation of chondritic materials—experimental studies. In H. Ohya, Ed., Primitive Solar Nebula and Origin of Planets, pp. 427–446, Terra Scientific Publishing Company (TERRAPUB) Tokyo.Search in Google Scholar

Newman, S.F., Buratti, B.J., Brown, R.H., Jaumann, R., Bauer, J., and Momary, T. (2008) Photometric and spectral analysis of the distribution of crystalline and amorphous ices on Enceladus as seen by Cassini. Icarus, 193, 397–406.10.1016/j.icarus.2007.04.019Search in Google Scholar

Noguchi, T. (1994) Petrology and mineralogy of the Coolidge meteorite (CV4). Proceedings of the NIPR Symposium of Antarctic Meteorites, 7, 42–72.Search in Google Scholar

Nummelin, A., Whittet, D.C.B., Gibb, E.L., Gerakines, P.A., and Chiar, J.E. (2001) Solid carbon dioxide in regions of low-mass star formation. The Astrophysical Journal, 558, 185–193.10.1086/322480Search in Google Scholar

Öberg, K.I., Boogert, A.C.A., Pontoppidian, K.M., Blake, G.A., Evans, N.J., van Lahuis, F., and Dishoeck, E.F. (2008) The c2d Spitzer spectroscopic survey of ices around low-mass young stellar objects. III. CH4 The Astrophysical Journal, 678, 1032–1041.10.1086/533432Search in Google Scholar

Omont, A., Moseley, S.H., Forveille, T., Glaccum, W.J., Harvey, P.M., Likkel, L., Lowenstein, R.F., and Lisse, C.M. (1990) Observation of 40–70 micron bands of ice in IRAS 09371-1212 and other stars. The Astrophysical Journal, 355, L27–L30.10.1086/185730Search in Google Scholar

Palme, H., Hutcheon, I.D., and Spettel, B. (1994) Composition and origin of refractory-metal-rich assemblages in a Ca,Al-rich Allende inclusion. Geochimica et Cosmochimica Acta, 58, 495–513.10.1016/0016-7037(94)90479-0Search in Google Scholar

Palumbo, M.E. (2005) The morphology of interstellar water ice. Journal of Physics Conference Series, 6, 211–216.10.1088/1742-6596/6/1/025Search in Google Scholar

Palumbo, M.E., Tielens, A.G.G.M., and Tokunaga, A.T. (1995) Solid carbonyl sulphide (OCS) in W33A. The Astrophysical Journal, 449, 674–680.10.1086/176088Search in Google Scholar

Palumbo, M.E., Geballe, T.R., and Tielens, A.G.G.M. (1997) Solid carbonyl sulfide (OCS) in dense molecular clouds. The Astrophysical Journal, 479, 839–844.10.1086/303905Search in Google Scholar

Pendleton, Y.J., and Allamandola, L.J. (2002) The organic refractory material in the diffuse interstellar medium: Mid-infrared spectroscopic constraints. The Astrophysical Journal Supplement, 138, 75–98.10.1086/322999Search in Google Scholar

Podosek, F.A., Zinner, E.K., MacPherson, G.J., Lundberg, L.L., Brannon, J.C., and Fahey, A.J. (1991) Correlated study of initial 87Sr/86Sr and Al-Mg isotope systematics and petrologic properties in a suite of refractory inclusions from the Allende meteorite. Geochimica et Cosmochinica Acta, 55, 1083–1110.10.1016/0016-7037(91)90165-2Search in Google Scholar

Pontoppidan, K.M., Dartois, E., van Dishoeck, E.F., Thi, W.-F., and d’Hendecourt, L. (2003) Detection of abundant solid methanol toward young low mass stars. Astronomy & Astrophysics, 404, L17–L20.10.1051/0004-6361:20030617Search in Google Scholar

Pontoppidan, K.M., Boogert, A.C.A., Fraser, H.J., van Dishoeck, E.F., Blake, G.A., Lahuis, F., Öberg, K.I., Evans, J., and Salyk, C. (2008) The c2d spitzer spectroscopic survey of ices around low-mass young stellar objects. II. CO2 The Astrophysical Journal, 678, 1005–1031.10.1086/533431Search in Google Scholar

Qasim, D., Chuang, K.-J., Fedoseev, G., Ioppolo, S., Boogert, A.C.A., and Linnartz, H. (2018) Formation of interstellar methanol ice prior to the heavy CO freeze-out stage. Astronomy & Astrophysics, 612, A83, 9 pp.10.1051/0004-6361/201732355Search in Google Scholar

Richter, F.M., Davis, A.M., Ebel, D.S., and Hashimoto, A. (2002) Elemental and isotopic fractionation of Type B calcium-, aluminum-rich inclusions: Experiments, theoretical considerations, and constraints on their thermal evolution. Geochimica et Cosmochimica Acta, 66, 521–540.10.1016/S0016-7037(01)00782-7Search in Google Scholar

Richter, F.M., Janney, P.E., Mendybaev, R.A., Davis, A.M., and Wadhwa, M. (2007) Elemental and isotopic fractionation of Type B CAI-like liquids by evaporation. Geochimica et Cosmochimica Acta, 71, 5544–5564.10.1016/j.gca.2007.09.005Search in Google Scholar

Roser, J.E., Vidali, G., Manicò, G., and Pirronello, V. (2001) Formation of carbon dioxide by surface reactions on ices in the interstellar medium. The Astrophysical Journal, 555, L61–L64.10.1086/321732Search in Google Scholar

Rubin, A.E. (2013) An amoeboid olivine inclusion (AOI) in CK3 NWA 1559, comparison to AOIs in CV3 Allende, and the origin of AOIs in CK and CV chondrites. Meteoritics & Planetary Science, 48, 432–441.10.1111/maps.12071Search in Google Scholar

Rubin, A.E., and Kallemeyn, G.W. (1989) Carlisle Lakes and Allan Hills 85151: members of a new chondrite grouplet. Geochimica et Cosmochimica Acta, 53, 3035–3044.10.1016/0016-7037(89)90179-8Search in Google Scholar

Rubin, A.E., and Ma, C. (2017) Meteoritic minerals and their origins. Chemie der Erde, 77, 325–385.10.1016/j.chemer.2017.01.005Search in Google Scholar

Rubin, A.E., and Ma, C. (2020) Meteorite Mineralogy. Cambridge University Press, in press.10.1093/acrefore/9780190647926.013.205Search in Google Scholar

Rubin, A.E., Sailer, A.L., and Wasson, J.T. (1999) Troilite in the chondrules of type-3 ordinary chondrites. Geochimica et Cosmochimica Acta, 63, 2281–2298.10.1016/S0016-7037(99)00119-2Search in Google Scholar

Russell, S.S., Huss, G.R., Fahey, A.J., Greenwood, R.C., Hutchison, R., and Wasserburg, G.J. (1998) An isotopic and petrologic study of calcium–aluminum-rich inclusions from CO3 meteorites. Geochimica et Cosmochimica Acta, 62, 689–714.10.1016/S0016-7037(97)00374-8Search in Google Scholar

Ruzicka, A. (1997) Mineral layers around coarse-grained, Ca–Al-rich inclusions in CV3 carbonaceous chondrites: Formation by high-temperature metasomatism. Journal of Geophysical Research, 102, 13387–13402.10.1029/97JE00416Search in Google Scholar

Sack, N.J., and Baragiola, R.A. (1993) Sublimation of vapor-deposited water ice below 170 K, and its dependence on growth conditions. Physical Review B, 48, 9973–9978.10.1103/PhysRevB.48.9973Search in Google Scholar PubMed

Sack, R.O., and Ghiorso, M.S. (1994a) Thermodynamic properties of multicomponent pyroxenes: I. Formulation of a general model. Contributions to Mineralogy and Petrology, 116, 277–286.10.1007/BF00306497Search in Google Scholar

Sack, R.O., and Ghiorso, M.S. (1994b) Thermodynamic properties of multicomponent pyroxenes: II. Phase relations in the quadrilateral. Contributions to Mineralogy and Petrology, 116, 287–300.10.1007/BF00306498Search in Google Scholar

Sack, R.O., and Ghiorso, M.S. (1994c) Thermodynamics of multicomponent pyroxenes III: Calibration of Fe2+(Mg)–1 TiAl(MgSi)–1 TiFe3+(MgSi)–1 AlFe3+(MgSi)–1 NaAl(CaMg)–1 Al2(MgSi)–1 and Ca(Mg)–1 exchange reactions between pyroxenes and silicate melts. Contributions to Mineralogy and Petrology, 118, 271–296.10.1007/BF00306648Search in Google Scholar

Sack, R.O., and Ghiorso, M.S. (2017) Ti3+- and Ti4+-rich fassaites at the birth of the solar system: Thermodynamics and applications. American Journal of Science, 317, 807–845.10.2475/07.2017.02Search in Google Scholar

Sahai, R., Zijlstra, A., Sánchez Contreras, C., and Morris, M. (2003) An icy, bipolar proto-planetary nebula with knotty jets: IRAS 22036+5306. The Astrophysical Journal Letters, 586, L81–L85.10.1086/374582Search in Google Scholar

Salama, F., Galazutdinov, G.A., Krelowski, J., Biennier, L., Beletsky. Y., and Song, I.-O. (2011) Polycyclic aromatic hydrocarbons and the diffuse interstellar bands: A survey. The Astrophysical Journal 728, 154–161.10.1088/0004-637X/728/2/154Search in Google Scholar

Salzmann, C.G. (2018) Advances in the experimental exploration of water’s phase diagram. arXiv:1812.04333. doi: 1063/1.5085163.1063/1.5085163Search in Google Scholar

Sandford, S.A., Allamandola, L.J., Tielens, A.G.G.M., and Valero, G.J. (1988) Laboratory studies of the infrared spectral properties of CO in astrophysical ices. The Astrophysical Journal, 329, 498–510.10.1086/166395Search in Google Scholar PubMed

Saxena, S.K., and Hrubiak, R. (2014) Mapping the nebular condensates and the chemical composition of the terrestrial planets. Earth and Planetary Science Letters, 393, 113–119.10.1016/j.epsl.2014.02.045Search in Google Scholar

Schaefer, L., and Fegley, B. (2010) Volatile element chemistry during metamorphism of ordinary chondritic material and some of its implications for the composition of asteroids. Icarus, 205, 483–496.10.1016/j.icarus.2009.08.025Search in Google Scholar

Schertl, H.-P., Mills, S.J., and Maresch, W.V. (2018) A Compendium of IMA-Approved Mineral Nomenclature. International Mineralogical Association, Melbourne, Australia.Search in Google Scholar

Schutte, W.A., Boogert, A.C.A., Tielens, A.G.G.M., Whittet, D.C.B., Gerakines, P.A., Chiar, J.E., Ehrenfreund, P., Greenberg, J.M., van Dishoeck, E.F., and de Graauw, T. (1999) Weak ice absorption features at 7.24 and 7.41 microns in the spectrum of the obscured young stellar object W33A. Astronomy & Astrophysics, 343, 966–976.Search in Google Scholar

Scott, E.R.D., and Krot, A.N. (2014) Chondrites and their components. In A.M. Davis, H.D. Holland, and K.K. Turekian, Eds., Treatise on Geochemistry, Vol. 1: Meteorites, Comets, and Planets, Second edition. pp. 65–137. Elsevier-Pergamon.10.1016/B978-0-08-095975-7.00104-2Search in Google Scholar

Scott, E.R.D., and Rajan, S. (1979) Thermal history of the Shaw chondrite. Proceedings of the Lunar and Planetary Science Conference, 10, 1031–1043.Search in Google Scholar

Seki, J., and Hasegawa, H. (1983) The heterogeneous condensation of interstellar ice grains. Astrophysics and Space Science, 94, 177–189.10.1007/BF00651770Search in Google Scholar

Shibata, Y. (1996) Opaque minerals in Antarctic CO3 carbonaceous chondrites: Yamato-74135, -790992, -791717, -81020, -81025, -82050, and Allan Hills 77307. Proceedings of the NIPR Symposium on Antarctic Meteorites, 9, 79–96.Search in Google Scholar

Shu, F.H., Shang, H., and Lee, T. (1996) Toward an astrophysical theory of chondrites. Science, 271, 1545–1552.10.1126/science.271.5255.1545Search in Google Scholar

Simon, S.B., and Grossman, L. (1992) Low temperature exsolution in refractory siderophile element-rich opaque assemblages from the Leoville carbonaceous chondrite. Earth and Planetary Science Letters, 110, 67–75.10.1016/0012-821X(92)90039-XSearch in Google Scholar

Simon, S.B., and Grossman, L. (1997) In situ formation of palisade bodies in calcium, aluminum-rich refractory bodies. Meteoritics & Planetary Science, 32, 61–70.10.1111/j.1945-5100.1997.tb01241.xSearch in Google Scholar

Smith, R.G., Sellgren, K., and Tokunaga, A.T. (1989) Absorption features in the 3-micron spectra of protostars. The Astrophysical Journal, 344, 413–426.10.1086/167809Search in Google Scholar

Simon, S.B., Yoneda, S., Grossman, L., and Davis, A.M. (1994) A CaAl4O7-bearing refractory spherule from Murchison: Evidence for very high-temperature melting in the solar nebula. Geochimica et Cosmochimica Acta, 58, 1937–1949.10.1016/0016-7037(94)90425-1Search in Google Scholar

Simon, S.B., Davis, A.M., and Grossman, L. (1996) A unique ultra-refractory inclusion from the Murchison meteorite. Meteoritics, 31, 106–115.10.1111/j.1945-5100.1996.tb02060.xSearch in Google Scholar

Smith, D.G.W., Miúra, Y., and Launspach, S. (1993) Fe, Ni, and Co variations in the metals from some Antarctic chondrites. Earth and Planetary Science Letters, 120, 487–498.10.1016/0012-821X(93)90259-CSearch in Google Scholar

Snow, T.P., and McCall, B.J. (2006) Diffuse atomic and molecular clouds. Annual Review of Astronomy and Astrophysics, 44, 367–414.10.1146/annurev.astro.43.072103.150624Search in Google Scholar

Snow, T., and Witt, A. (1995) The interstellar carbon budget and the role of carbon in dust and large molecules. Science, 270, 1455–1460.10.1126/science.270.5241.1455Search in Google Scholar

Snyder, L.E., and Buhl, D. (1971) Observations of radio emission from interstellar hydrogen cyanide. The Astrophysical Journal, 163, L47–L52.10.1086/180664Search in Google Scholar

Snyder, L.E., Buhl, D., Zuckerman, B., and Palmer, P. (1969) Microwave detection of interstellar formaldehyde. Physical Review Letters, 22, 679–681.10.1103/PhysRevLett.22.679Search in Google Scholar

Sorrell, W. (1995) Nebular lightning and the chondrule factory. Comments of Astrophysics, 18, 151–159.Search in Google Scholar

Steele, I.M. (1995) Mineralogy of a refractory inclusion in the Allende (C3V) meteorite. Meteoritics, 30, 9–14.10.1111/j.1945-5100.1995.tb01205.xSearch in Google Scholar

Sylvester, P. J., Grossman, L., and MacPherson, G.J. (1992) Refractory inclusions with unusual chemical compositions from the Vigarano carbonaceous chondrite. Geochimica et Cosmochimica Acta, 56, 1343–1363.10.1016/0016-7037(92)90066-RSearch in Google Scholar

Sylvester, P.J., Simon, S.B., and Grossman, L. (1993) Refractory inclusions from the Leoville, Efremovka, and Vigarano C3V chondrites: Major element differences between Types A and B, and extraordinary refractory siderophile element compositions. Geochimica et Cosmochimica Acta, 57, 3763–3784.10.1016/0016-7037(93)90154-OSearch in Google Scholar

Taylor, G.J., Okada, A., Scott, E.R.D., Rubin, A.E., Huss, G.R., and Keil, K. (1981) The occurrence and implications of carbide-magnetite assemblages in unequilibrated ordinary chondrites. Proceedings of the Lunar and Planetary Science Conference, 12, 1076–1078.Search in Google Scholar

Thompson, T. (1818) Scientific intelligence, and notices of subjects connected with science. III. Notice concerning certain minerals lately discovered. Annals of Philosophy, or Magazine of Chemistry, Mineralogy, Mechanics, Natural History, Agriculture, and the Arts, 12, 310–312.Search in Google Scholar

Tielens, A.G.G.M. (2008) Interstellar polycyclic aromatic hydrocarbon molecules. Annual Review of Astronomy and Astrophysics, 46, 289–337.10.1017/CBO9780511819056.007Search in Google Scholar

Ulyanov, A.A., Korina, M.I., Nazarov, M.A., and Sherbovsky, E.Y. (1982) Efremovka CAIs: Mineralogical and petrological data. Proceedings of the Lunar and Planetary Science Conference, 13, 813–814.Search in Google Scholar

Urey, H.C. (1955) The cosmic abundances of potassium, uranium, and thorium and the heat balances of the Earth, the Moon, and Mars. Proceedings of the National Academy of Sciences, 15, 127–144.10.1073/pnas.41.3.127Search in Google Scholar PubMed PubMed Central

Wakelam, V., Bron, E., Cazaux, S., Dulieu, F., Gry, C., Guillard, P., Habart, E., Hornekaer, L., Morisset, S., Nyman, G., and others. (2017) H2 formation on interstellar dust grains: The viewpoints of theory, experiments, models, and observations. Molecular Astrophysics, 9, 1–36.10.1016/j.molap.2017.11.001Search in Google Scholar

Wang, S., Li, A., and Jiang, B.W. (2015) The interstellar oxygen crisis, or where have all the oxygen atoms gone? Monthly Notices of the Royal Astronomical Society, 454, 569–575.10.1093/mnras/stv1900Search in Google Scholar

Wark, D.A. (1986) Evidence for successive episodes of condensation at high temperatures in a part of the solar nebula. Earth and Planetary Science Letters, 77, 129–148.10.1016/0012-821X(86)90155-XSearch in Google Scholar

Wark, D.A. (1987) Plagioclase-rich inclusions in carbonaceous chondrite meteorites: Liquid condensates? Geochimica et Cosmochimica Acta, 51, 221–242.10.1016/0016-7037(87)90234-1Search in Google Scholar

Wark, D.A., and Boynton, W.V. (2001) The formation of rims on calcium–aluminum-rich inclusions: Step I. Flash heating. Meteoritics & Planetary Science, 36, 1135–1166.10.1111/j.1945-5100.2001.tb01949.xSearch in Google Scholar

Wark, D.A., and Lovering, J.F. (1977) Marker events in the early solar system: Evidence from rims on Ca–Al-rich inclusions in carbonaceous chondrites. Proceedings of the Lunar Science Conference, 8, 95–112.Search in Google Scholar

Wark, D.A., and Lovering, J.F. (1978) Refractory/platinum metals and other opaque phases in Allende Ca-Al-rich inclusions (CAI’s). Proceedings of the Lunar Science Conference, 9, 1214–1216.Search in Google Scholar

Wark, D.A., and Lovering, J.F. (1982a) Evolution of Ca-Al-rich bodies in the earliest solar system: growth by incorporation. Geochimica et Cosmochimica Acta, 46, 2595–2607.10.1016/0016-7037(82)90380-5Search in Google Scholar

Wark, D.A., and Lovering, J.F. (1982b) The nature and origin of type B1 and B2 inclusions in the Allende meteorite. Geochimica et Cosmochimica Acta, 46, 2581–2594.10.1016/0016-7037(82)90379-9Search in Google Scholar

Wark, D.A., Boynton, W.V., Keays, R.R., and Palme, H. (1987) Trace element and petrologic clues to the formation of forsterite-bearing Ca-Al-rich inclusions in the Allende meteorite. Geochimica et Cosmochimica Acta, 51, 607–622.10.1016/0016-7037(87)90073-1Search in Google Scholar

Wasserburg, G.J., Lee, T., and Papanastassiou, D.A. (1977) Correlated O and Mg isotopic anomalies in Allende inclusions: II. Magnesium. Geophysical Research Letters, 4, 299–302.10.1029/GL004i007p00299Search in Google Scholar

Weber, D., and Bischoff, A. (1994) The occurrence of grossite (CaAl4O7 in chondrites. Geochimica et Cosmochimica Acta, 58, 3855–3877.10.1016/0016-7037(94)90368-9Search in Google Scholar

Weber, D., and Bischoff, A. (1997) Refractory inclusions in the CR chondrite Acler 059-El Djouf 001: Petrology, chemical composition, and relationship to inclusion populations in other types of carbonaceous chondrites. Chemie der Erde, 57, 1–24.Search in Google Scholar

Weber, D., Zinner, E., and Bischoff, A. (1995) Trace element abundances and magnesium, calcium and titanium isotopic compositions of grossite containing inclusions from the carbonaceous chondrite, Acfer 182. Geochimica et Cosmochimioca Acta, 59, 803–823.10.1016/0016-7037(94)00366-TSearch in Google Scholar

Weisberg, M.K., Prinz, M., and Nehru, C.E. (1988) Petrology of ALH85085: A chondrite with unique characteristics. Earth and Planetary Science Letters, 91, 19–32.10.1016/0012-821X(88)90148-3Search in Google Scholar

Weisberg, M.K., Prinz, M., Clayton, R.N., and Mayeda, T.K. (1993) The CR (Renazzo-tyoe) carbonaceous chondrite group. Geochimica et Cosmochimica Acta, 57, 1567–1586.10.1016/0016-7037(93)90013-MSearch in Google Scholar

Weisberg, M.K., Connolly, H.C. Jr., and Ebel, D.S. (2004) Petrology and origin of amoeboid olivine aggregates in CR chondrites. Meteoritics & Planetary Science, 39, 1741–1753.10.1111/j.1945-5100.2004.tb00070.xSearch in Google Scholar

Weisberg, M.K., Connolly, H., Zolensky, M., Bland, P., Brearley, A., Bridges, J., Brownlee, D., Butterworth, A., and 33 others. (2006) Stardust (comet) samples and the meteorite record. American Geophysical Union, Abstract P51E-1243.Search in Google Scholar

Whittet, D.C.B. (2003) Dust in the Galactic Environment. Institute of Physics Publishing, Bristol.Search in Google Scholar

Whittet, D.C.B., Pendleton, Y.J., Gibb, E.L., Boogert, A.C.A., Chiar, J.E., and Nummelin, A. (2001) Observational constraints on the abundance and evolution of “XCN” in interstellar grain mantles. The Astrophysical Journal, 550, 793–798.10.1086/319794Search in Google Scholar

Widowiak, T.J., Cronin, L.W., Beegle, L.W., and Robinson, M.S. (1995) Plasma processing of interstellar PAHs into solar system kerogen. Planetary and Space Sciences, 43, 1175–1182.10.1016/0032-0633(95)00017-YSearch in Google Scholar

Williams, D.A. (2005) Gas and dust in the interstellar medium. Journal of Physics Conference Series, 6, 1–17.10.1088/1742-6596/6/1/001Search in Google Scholar

Wilson, R.W., Jeeferts, K.B., and Penzias, A.A. (1971) Carbon monoxide in the Orion nebula. Astrophysical Journal Letters, 161, 43–44.10.1086/180567Search in Google Scholar

Winnewisser G., and Churchwell E. (1975) Interstellar formic acid. Sterne und Weltraum, 14, 288–289 (in German).Search in Google Scholar

Womack, M., Ziurys, L.M., and Wyckoff, S. (1992) Estimates of N2 abundances in dense molecular clouds. The Astrophysical Journal, 393, 188–192.10.1086/171496Search in Google Scholar

Wood, J.A., and Hashimoto, A. (1993) Mineral equilibrium in fractionated nebular systems. Geochimica et Cosmochimica Acta, 57, 2377–2388.10.1016/0016-7037(93)90575-HSearch in Google Scholar

Wood, B.J., Smythe, D.J., and Harrison, T. (2019) The condensation temperatures of the elements. American Mineralogist, 104, 844–856.10.2138/am-2019-6852CCBYSearch in Google Scholar

Yan, L., Chary, R., Armus, L., Teplitz, H., Helou, G., Frayer, D., Fadda, D., Surace, J., and Choi, P. (2005) Spitzer detection of polycyclic aromatic hydrocarbon and silicate dust features in the mid-infrared spectra of z ~2 ultraluminous infrared galaxies. The Astrophysical Journal, 628, 604–610.10.1086/431205Search in Google Scholar

Yoneda, S., and Grossman, L. (1995) Condensation of CaO-MgO-Al2O3-SiO2 liquids from cosmic gases. Geochimica et Cosmochimica Acta, 59, 3413–3444.10.1016/0016-7037(95)00214-KSearch in Google Scholar

Zasowski, G., Kemper, F., Watson, D.M., Furlan, E., Bohac, C.J., Hull, C., and Green, J.D. (2009) Spitzer infrared spectrograph observations of Class I/II objects in Taurus: Composition and thermal history of the circumstellar ices. The Astrophysical Journal, 694, 459–478.10.1088/0004-637X/694/1/459Search in Google Scholar

Zhang, A., Benoit, P.H., and Sears, D.W.G. (1995) The classification and complex thermal history of the enstatite chondrites. Journal of Geophysical Research, 100, 9417–9438.10.1029/95JE00502Search in Google Scholar

Zhang, A.-C., Ma, C., Sakamoto, N., Wang, R.-C., Hsu, W.-B., and Yurimoto, H. (2015) Mineralogical anatomy and implications of a Ti-Sc-rich ultra-refractory inclusion from Sayh al Uhaymir 290 CH3 chondrite. Geochimica et Cosmochimica Acta, 163, 27–39.10.1016/j.gca.2015.04.052Search in Google Scholar

Zinner, E.K., Caillet, C., and El Goresy, A. (1991) Evidence for extraneous origin of magnesiowüstite–metal Fremdlinge from the Vigarano CV3 chondrite. Earth and Planetary Science Letters, 102, 252–264.10.1016/0012-821X(91)90021-9Search in Google Scholar

Zuckerman, B., Ball, J.A., and Gottlieb, C.A. (1971) Microwave detection of interstellar formic acid. The Astrophysical Journal, 163, L41–L45.10.1086/180663Search in Google Scholar

Received: 2020-01-22
Accepted: 2020-04-17
Published Online: 2020-10-29
Published in Print: 2020-10-27

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Scroll Up Arrow