Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 2, 2022

On the paragenetic modes of minerals: A mineral evolution perspective

  • Robert M. Hazen ORCID logo and Shaunna M. Morrison
From the journal American Mineralogist

Abstract

A systematic survey of 57 different paragenetic modes distributed among 5659 mineral species reveals patterns in the diversity and distribution of minerals related to their evolving formational environments. The earliest minerals in stellar, nebular, asteroid, and primitive Earth contexts were dominated by relatively abundant chemical elements, notably H, C, O, Mg, Al, Si, S, Ca, Ti, Cr, and Fe. Significant mineral diversification subsequently occurred via two main processes, first through gradual selection and concentration of rarer elements by fluid-rock interactions (for example, in hydrothermal metal deposits, complex granite pegmatites, and agpaitic rocks), and then through near-surface biologically mediated oxidation and weathering.

We find that 3349 mineral species (59.2%) are known from only one paragenetic context, whereas another 1372 species (24.2%) are associated with two paragenetic modes. Among the most genetically varied minerals are pyrite, albite, hornblende, corundum, magnetite, calcite, hematite, rutile, and baryte, each with 15 or more known modes of formation.

Among the most common paragenetic modes of minerals are near-surface weathering/oxidation (1998 species), subsurface hydrothermal deposition (859 species), and condensation at volcanic fumaroles (459 species). In addition, many species are associated with compositionally extreme environments of highly differentiated igneous lithologies, including agpaitic rocks (726 species), complex granite pegmatites (564 species), and carbonatites and related carbonate-bearing magmas (291 species). Biological processes lead to at least 2707 mineral species, primarily as a consequence of oxidative weathering but also through coal-related and other taphonomic minerals (597 species), as well as anthropogenic minerals, for example as byproducts of mining (603 minerals). However, contrary to previous estimates, we find that only ~34% of mineral species form exclusively as a consequence of biological processes. By far the most significant factor in enhancing Earth’s mineral diversity has been its dynamic hydrological cycle. At least 4583 minerals—81% of all species—arise through water-rock interactions.

A timeline for mineral-forming events suggests that much of Earth’s mineral diversity was established within the first 250 million years. If life is rare in the universe, then this view of a mineralogically diverse early Earth provides many more plausible reactive pathways over a longer timespan than previous models. If, however, life is a cosmic imperative that emerges on any mineral- and water-rich world, then these findings support the hypothesis that life on Earth developed rapidly in the early stages of planetary evolution.

Funding statement: This publication is a contribution to the 4D Initiative and the Deep-time Digital Earth (DDE) program. Studies of mineral evolution and mineral ecology have been supported by the Alfred P. Sloan Foundation, the W.M. Keck Foundation, the John Templeton Foundation, NASA Astrobiology Institute (Cycle 8) ENIGMA: Evolution of Nanomachines in Geospheres and 329 Microbial Ancestors (80NSSC18M0093), a private foundation, and the Carnegie Institution for Science. Any opinions, findings, or recommendations expressed herein are those of the authors and do not necessarily reflect the views of the National Aeronautics and Space Administration.

Acknowledgments

This work would not have been possible without the remarkable publication of multi-volume references, especially Rock-Forming Minerals (Deer et al. 1982–2013) and The Handbook of Mineralogy (Anthony et al. 1990–2003), as well as ongoing efforts to develop and expand comprehensive open-access data resources, especially by Jolyon Ralph, founder of mindat.org, and Robert T. Downs, founder of rruff.info. Collectively, these mineral informatics pioneers are empowering a new age of data-driven discovery in mineralogy.

We are deeply grateful to Raquel Alonso Perez, Daniel Hummer, Sergey Krivovichev, Michael Walter, and Nathan Yee, who provided detailed, thoughtful, and constructive reviews that significantly improved an early version of this contribution. George Harlow and Andrea Kozoil contributed comprehensive reviews of the penultimate manuscript. We are also grateful to Robert Downs, Paul Falkowski, Frank Hawthorne, Peter Heaney, Jun Korenaga, Jeffrey Post, Simone Runyon, and Steven Shirey for thoughtful discussions and comments.

  1. Manuscript handled by Daniel Hummer

References cited

Akai, J., Akai, K., Ito, M., Nakano, S., Maki, Y., and Sasagawa, I. (1999) Biologically induced iron ore at Gunma iron mine, Japan. American Mineralogist, 84, 171–182.10.2138/am-1999-1-219Search in Google Scholar

Alfors, J.T., Stinson, M.C., Matthews, R.A., and Pabst, A. (1965) Seven new barium minerals from eastern Fresno County, California. American Mineralogist, 50, 314–340.Search in Google Scholar

Allwood, A.C., Walter, M.R., Kamber, B.S., Marshall, C.P., and Burch, I.W. (2006) Stromatolite reef from the Early Archaean era of Australia. Nature, 441, 714–718.10.1038/nature04764Search in Google Scholar

Anbar, A.D., and Holland, H.D. (1992) The photochemistry of manganese and the origin of banded iron formations. Geochimica et Cosmochimica Acta, 56, 2595–2603.10.1016/0016-7037(92)90346-KSearch in Google Scholar

Anbar, A.D., and Knoll, A.H. (2002) Proterozoic ocean chemistry and evolution: A bioinorganic bridge? Science, 297, 1137–1142.10.1126/science.1069651Search in Google Scholar PubMed

Anbar, A.D., Duan, Y., Lyons, T.W., Arnold, G.L., Kendall, B., Creaser, R.A., and Kaufman, A.J. (2007) A whiff of oxygen before the great oxidation event? Science, 317, 1903–1906.10.1126/science.1140325Search in Google Scholar PubMed

Anthony, J.W., Bideaux, R.A., Bladh, K.W., and Nichols, M.C. (1990–2003) Handbook of Mineralogy, 6 volumes. Mineral Data Publishing.Search in Google Scholar

Anthony, J.W., Bideaux, R.A., Bladh, K.W., and Nichols, M.C. (2003) Handbook of Mineralogy, Volume V. Borates, Carbonates, Sulfates. Mineral Data Publishing.Search in Google Scholar

Anzolini, C., Wang, F., Harris, G.A., Locock, A.J., Zhang, D., Nestola, F., Peruzzo, L., Jacobsen, S.D., and Pearson, D.G. (2019) Nixonite, Na2Ti6O13, a new mineral from a metasomatized mantle garnet pyroxenite from the western Rae Craton, Darby kimberlite field, Canada. American Mineralogist, 104, 1336–1344.10.2138/am-2019-7023Search in Google Scholar

Aparicio, C., and Ginebra, M.-P. (2016) Biomineralization and Biomaterials: Fundamentals and Applications. Woodhead Publishing.Search in Google Scholar

Armstrong, R.L. (1991) The persistent myth of crustal growth. Australian Journal of Earth Sciences, 38, 613–630.10.1080/08120099108727995Search in Google Scholar

Ashwal, L.D. (1993) Anorthosites. Springer-Verlag.10.1007/978-3-642-77440-9Search in Google Scholar

Audra, P., Bosák, P., Gázquez, F., Cailhol, D., Skála, R., Lisá, L., Jonásová, S., Frumkin, A., Knez, M., Slabe, T., Hajna, N.Z., and Al-Farraj, A. (2017) Bat urea-derived minerals in arid environment. First identification of allantoin, C4H6N4O3, in Kahf Kharrat Najem Cave, United Arab Emirates. International Journal of Speleology, 46, 81–92.10.5038/1827-806X.46.1.2001Search in Google Scholar

Audra, P., Waele, J.D., Bentaleb, I., Chronáková, A., Vaclav, K., D’Angeli, I.M., Carbone, C., Madonia, G., Vattano, M., Scopelliti, G., and others (2018) Guano-related phosphate-rich minerals in European caves. International Journal of Speleology, 48, 75–105.10.5038/1827-806X.48.1.2252Search in Google Scholar

Augé, T., Cocherie, A., Genna, A., Armstrong, R., Guerrot, C., Mukherjee, M.M., and Patra, R.N. (1993) Age of the Baula PGE mineralization (Orissa, India) and its implications concerning the Singhbhum Archaean nucleus. Precambrian Research, 121, 85–101.10.1016/S0301-9268(02)00202-4Search in Google Scholar

Bai, W.J., Zhou, M.F., and Robinson, P. T. (2011) Possibly diamond-bearing mantle peridotites and chromites in the Luobusa and Dongqiao ophiolites. Tibet. Canadian Journal of Earth Sciences, 30, 1650–1659.10.1139/e93-143Search in Google Scholar

Baker, G. (1962) Detrital Heavy Minerals in Natural Accumulates with Special Reference to Australian Occurrences. Australia Institute of Mining and Metallurgy.Search in Google Scholar

Banerjee, D.M. (1971) Precambrian stromatolitic phosphorites of Udaipur, Rajasthan, India. GSA Bulletin, 82, 2319–2329.10.1130/0016-7606(1971)82[2319:PSPOUR]2.0.CO;2Search in Google Scholar

Barboni, M., Boehnke, P., Keller, B., Kohl, I.E., Schoene, B., Young, E.D., and McKeegan, K.D. (2017) Early formation of the Moon 4.51 billion years ago. Science Advances, 3, e1602365.10.1126/sciadv.1602365Search in Google Scholar

Barker, W.W., Welch, S.A., and Banfield, J.F. (1998) Experimental observations of the effects of bacteria on aluminosilicate weathering. American Mineralogist, 83, 1551–1563.10.2138/am-1998-11-1243Search in Google Scholar

Barley, M.E., and Groves, D.I. (1992) Supercontinent cycles and the distribution of metal deposits through time. Geology, 20, 291–294.10.1130/0091-7613(1992)020<0291:SCATDO>2.3.CO;2Search in Google Scholar

Barnes, H.L., and Rose, A.W. (1998) Origins of hydrothermal ores. Science, 279, 2064–2065.10.1126/science.279.5359.2064Search in Google Scholar

Baturin, G.N., and Bezrukov, P.L. (1979) Phosphorites on the sea floor and their origin. Marine Geology, 31, 317–332.10.1016/0025-3227(79)90040-9Search in Google Scholar

Bauer, A.M., Reimink, J.R., Chacko, T., Foley, B.J., Shirey, S.B., and Pearson, D.G. (2020) Hafnium isotopes in zircons document the gradual onset of mobile-lid tectonics. Geochemical Perspectives Letters, 14, 1–6.10.7185/geochemlet.2015Search in Google Scholar

Beazley, M.J., Matrinez, R.J., Sobecky, P.A., Webb, S.M., and Taillefert, M. (2017) Uranium biomineralization as a result of bacterial phosphatase activity: Insights from bacterial isolates from a contaminated subsurface. Environmental Science & Technology, 41, 5701–5707.10.1021/es070567gSearch in Google Scholar

Behrensmeyer, A.K., Kidwell, S.M., and Gastaldo, R.A. (2000) Taphonomy and paleobiology. Paleobiology, 26, 103–147.10.1666/0094-8373(2000)26[103:TAP]2.0.CO;2Search in Google Scholar

Bekker, A., Slack, J.F., Planavsky, N., Krapež, B., Hofmann, A., Konhauser, K.O., and Rouxel, O.J. (2010) Iron formation: The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric process. Economic Geology, 105, 467–508.10.2113/gsecongeo.105.3.467Search in Google Scholar

Bell, K. (1989) Carbonatites: Genesis and Evolution. Unwin Hyman.Search in Google Scholar

Belousova, E.A., Kostitsyn, Y.A., Griffin, W.L., Begg, G.C., O’Reilly, S.Y., and Pearson, N.J. (2010) The growth of the continental crust: Constraints from zircon Hf-isotope data. Lithos, 119, 457–466.10.1016/j.lithos.2010.07.024Search in Google Scholar

Berg, J.S., Schwedt, A., Kreutzmann, A.-C., Kuypers, M.M.M., and Milucka, J. (2014) Polysulfides as intermediates in the oxidation of sulfide to sulfate by Beggiatoa spp. Applied and Environmental Microbiology, 80, 629–636.10.1128/AEM.02852-13Search in Google Scholar

Berg, J.S., Duverger, A., Cordier, L., Laberty-Robert, C., Guyot, F., and Miot, J. (2020) Rapid pyritization in the presence of a sulfur/sulfate-reducing bacterial consortium. Scientific Reports, 10, Article 8264.10.1038/s41598-020-64990-6Search in Google Scholar

Bischoff, A. (1998) Aqueous alteration of carbonaceous chondrites: Evidence for preaccretionary alteration—A review. Meteoritics & Planetary Science, 33, 1113–1122.10.1111/j.1945-5100.1998.tb01716.xSearch in Google Scholar

Blais, S., and Auvray, B. (1990) Serpentinization in the Archean komatiitic rocks of the Kuhmo greenstone belt, eastern Finland. Canadian Mineralogist, 28, 55–66.Search in Google Scholar

Blichert-Toft, J., Moynier, F., Lee, C.A., Telouk, P., and Albare`de, F. (2010) The early formation of the IV iron meteorite parent body. Earth and Planetary Science Letters, 296, 469–480.10.1016/j.epsl.2010.05.036Search in Google Scholar

Blöthe, M., Wegorzewski, A., Müller, C., Simon, F., Kuhn, T., and Schippers, A. (2015) Manganese-cycling microbial communities inside deep-sea manganese nodules. Environmental Science & Technology, 49, 7692–7700.10.1021/es504930vSearch in Google Scholar

Bodiselitsch, B., Koeberl, C., Master, S., and Reimold, W.U. (2005) Estimating duration and intensity of Neoproterozoic snowball glaciations from Ir anomalies. Science, 308, 239–242.10.1126/science.1104657Search in Google Scholar

Boggs, S. Jr. (2006) Principles of Sedimentology and Stratigraphy, Fourth Edition. Pearson Education.Search in Google Scholar

Boujibar, A., Howell, S., Zhang, S., Hystad, G., Prabhu, A., Liu, N., Stephan, T., Narkar, S., Eleish, A., Morrison, S.M., Hazen, R.M., and Nittler, L.R. (2021) Cluster analysis of presolar silicon carbide grains: Evaluation of their classification and astrophysical implications. The Astrophysical Journal, 907, L39 14 pp.10.3847/2041-8213/abd102Search in Google Scholar

Bowles, J.F.W., Howie, R.A., Vaughan, D.J., and Zussman, J. (2011) Rock-Forming Minerals. Volume 5A. Second Edition. Non-Silicate: Oxides, Hydroxides and Sulphides. Geological Society of London.Search in Google Scholar

Boyd, R. (1991) Realism, anti-foundationalism and the enthusiasm for natural kinds. Philosophical Studies, 61, 127–148.10.1007/BF00385837Search in Google Scholar

Boyd, R. (1999) Homeostasis, species, and higher taxa. In R. Wilson, Ed., Species: New Interdisciplinary Essays. Cambridge, Massachusetts: Cambridge University Press, pp. 141–186.Search in Google Scholar

Boyd, E. S., and Druschel, G.K. (2013) Involvement of intermediate sulfur species in biological reduction of elemental sulfur under acidic, hydrothermal conditions. Applied and Environmental Microbiology, 79, 2061–2068.10.1128/AEM.03160-12Search in Google Scholar

Bradley, D.C. (2011) Secular trends in the geologic record and the supercontinent cycle. Earth-Science Reviews, 108, 16–33.10.1016/j.earscirev.2011.05.003Search in Google Scholar

Brasier, M. (2012) Secret Chambers: The Inside Story of Cells and Complex Life. Oxford University Press.Search in Google Scholar

Brasier, M.D. (1998) A billion years of environmental stability and the emergence of eukaryotes: New data from northern Australia. Geology, 26, 555–558.10.1130/0091-7613(1998)026<0555:ABYOES>2.3.CO;2Search in Google Scholar

Brearley, A.J., and Jones, R.H. (1998) Chondritic meteorites. In J. J. Papike, Ed., Planetary Materials. Reviews in Mineralogy and Geochemistry, 36, 3.1–3.398.Search in Google Scholar

Brown, M. (2007) Metamorphic conditions in orogenic belts: a record of secular change. International Geology Review, 49, 193–234.10.2747/0020-6814.49.3.193Search in Google Scholar

Brown, M., Johnson, T., and Gardiner, N.J. (2020) Plate tectonics and the Archean Earth. Annual Review of Earth and Planetary Sciences, 48, 291–320.10.1146/annurev-earth-081619-052705Search in Google Scholar

Buick, R., and Dunlop, J.S.R. (1990) Evaporitic sediments of early Archaean age from the Warrawoona Group, North Pole, Western Australia. Sedimentology, 37, 247–277.10.1111/j.1365-3091.1990.tb00958.xSearch in Google Scholar

Buick, R., Des Marais, D.J., and Knoll, A.H. (1995) Stable isotopic compositions of carbonates from the Mesoproterozoic Bangemall group, northwestern Australia. Chemical Geology, 123, 153–171.10.1016/0009-2541(95)00049-RSearch in Google Scholar

Burke, E.A.J. (2006) The end of CNMMN and CCM—Long live the CNMNC! Elements, 2, 388.10.2113/gselements.2.6.388Search in Google Scholar

Burnett, W.C., and Riggs, S.R., Eds. (1990) Phosphate Deposits of the World: Vol. 3, Genesis of Neogene to Recent Phosphorites. Cambridge University Press.Search in Google Scholar

Button, A. (1982) Sedimentary iron deposits, evaporates and phosphorites: State of the art report. In H.D. Holland and M. Schidlowski, Eds., Mineral Deposits and the Evolution of the Biosphere. Springer-Verlag, pp. 259–273.10.1007/978-3-642-68463-0_15Search in Google Scholar

Cairncross, B., and Beukes, N.J. (2013) The Kalahari Manganese Field, the Adventure Continues. Struik Nature Publishers.Search in Google Scholar

Cámara, F., Ciriotti, M.E., Bittarello, E., Nestola, F., Massimi, F., Radica, F., Costa, E., Benna, P., and Piccoli, G.C. (2014) Arsenic-bearing new mineral species from Valletta mine, Maira Valley, Piedmont, Italy: I. Grandaite, Sr2Al(AsO4)2(OH), description and crystal structure. Mineralogical Magazine, 78, 757–774.10.1180/minmag.2014.078.3.21Search in Google Scholar

Canfield, D. (2014) Oxygen: A Four Billion Year History. Princeton University Press.Search in Google Scholar

Carmichael, S.K., and Bräuer, S.L. (2015) Microbial diversity and manganese cycling: A review Cave Systems. Life in Extreme Environments. In Microbial Life of Cave Systems, De Gruyter, 137–160.10.1515/9783110339888-009Search in Google Scholar

Carpentier, W., Sandra, K., De Smet, I., Brigé, A., De Smit, L., and Van Neeumen, J. (2003) Microbial reduction and precipitation of vanadium by Shewanella oneidensis. Applied and Environmental Microbiology, 3636–3639.10.1128/AEM.69.6.3636-3639.2003Search in Google Scholar PubMed PubMed Central

Catheart, R.B. (2011) Anthropic rock: A brief history. History of Geo- and Space Science, 2, 57–74.10.5194/hgss-2-57-2011Search in Google Scholar

Cavarretta, G., Mottana, A., and Trece, F. (1981) Cesanite, [Ca2Na3[(OH)(SO4)3], a sulphate isotypic to apatite, from the Cesano geothermal field (Latium, Italy). Mineralogical Magazine, 44, 269–273.10.1180/minmag.1981.044.335.05Search in Google Scholar

Cawood, P.A., and Hawkesworth, C.J. (2015) Temporal relations between mineral deposits and global tectonic cycles. Geological Society of London Special Publications, 393, 9–21.10.1144/SP393.1Search in Google Scholar

Cawood, P.A., Hawkesworth, C.J., and Dhuime, B. (2013) The continental record and the generation of continental crust. Geological Society of America Bulletin, 125, 14–32.10.1130/B30722.1Search in Google Scholar

Cawood, P.A., Hawkesworth, C.J., Pisarevsky, S.A., Dhuime, B., Capitanio, F.A., and Nebel, O. (2018) Geological archive of the onset of plate tectonics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, A376, 20170405.10.1098/rsta.2017.0405Search in Google Scholar PubMed PubMed Central

Černý, P. (2005) The Tanco rare-element pegmatite deposit, Manitoba: Regional context, internal anatomy, and global comparisons. In R.L. Linnen and I.M. Samson, Eds., Rare-element geochemistry and mineral deposits. Geological Association of Canada Short Course, 127–158.Search in Google Scholar

Chan, M.A., Hinman, N.W., Potter-McIntyre, S.L., Schubert, K.E., Gillams, R.J., Awramik, S.M., Boston, P.J., Bower, D.M., Des Marais, D.J., Farmer, J.D., and others. (2019) Deciphering biosignatures in planetary contexts. Astrobiology, 19, 28 p.10.1089/ast.2018.1903Search in Google Scholar PubMed PubMed Central

Chang, S.-B.R., and Kirschvink, J.L. (1989) Magnetofossils, the magnetization of sediments, and the evolution of magnetite biomineralization. Annual Review of Earth and Planetary Sciences, 17, 169–195.10.1146/annurev.ea.17.050189.001125Search in Google Scholar

Chang, L.L.Y., Howie, R.A., and Zussman, J. (1996) Rock-Forming Minerals, vol. 5B. Non-silicates. Sulphates, Carbonates, Phosphates and Halides, 2nd ed. Longman Group.Search in Google Scholar

Chappell, B.W., and White, A.J.R. (2001) Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences, 48, 489–499.10.1046/j.1440-0952.2001.00882.xSearch in Google Scholar

Chauhan, D.S. (1979) Phosphate-bearing stromatolites of the Precambrian Aravalli phosphorite deposits of the Udaipur region, their environmental significance and genesis of phosphorite. Precambrian Research, 8, 95–126.10.1016/0301-9268(79)90040-8Search in Google Scholar

Chopin, C. (1984) Coesite and pure pyrope in high-grade blueschists of the western Alps: a first record and some consequences. Contributions to Mineralogy and Petrology, 86, 107–118.10.1007/BF00381838Search in Google Scholar

Ciesla, F.J., Lauretta, D.S., Cohen, B.A., and Hood, L.L. (2003) A nebular origin for chondritic fine-grained phyllosilicates. Science, 299, 549–552.10.1126/science.1079427Search in Google Scholar PubMed

Cleland, C.E., Hazen, R.M., and Morrison, S.M. (2021) Historical natural kinds and mineralogy: Systematizing contingency in the context of necessity. Proceedings of the National Academy of Sciences, 118, e2015370118 8 pp.10.1073/pnas.2015370118Search in Google Scholar PubMed PubMed Central

Coker, V.S., Bell, A.M.T., Pearce, C.I., Pattrick, R.A.D., van der Laan, G., and Lloyd, J.R. (2008) Time-resolved synchrotron powder X-ray diffraction study of magnetite formation by an Fe(III)-reducing bacterium Geobacter sulfurreducens. American Mineralogist, 93, 540–547.10.2138/am.2008.2467Search in Google Scholar

Condie, K.C., and Pease, V., Eds. (2008) When Did Plate Tectonics Start on Earth? Geological Society of America Special Paper, 440.Search in Google Scholar

Cook, P.J., and Shergold, J.H. (1990) Phosphate Deposits of the World. Volume 1, Proterozoic and Cambrian Phosphorites. Cambridge University Press.Search in Google Scholar

Corcoran, P.L., Moore, C.J., and Jazvac, K. (2014) An anthropogenic marker horizon in the future rock record. GSA Today, 24, 4–8.10.1130/GSAT-G198A.1Search in Google Scholar

Craig, J.R., and Vaughan, D. J. (1994) Ore Microscopy and Ore Petrography. Wiley.Search in Google Scholar

Crevello, P.D., Wilson, J.L., Sarg, J.F., and Read, J.F. (1989) Controls on Carbonate Platform and Basin Development. SEPM Special Publication, 44.10.2110/pec.89.44Search in Google Scholar

Cron, B., Henri, P., Chan, C.S., Macalady, J.L., and Cosmidis, J. (2019) Elemental sulfur formation by Sulfuricurvum kujiense is mediated by extracellular organic compounds. Frontiers in Microbiology, 10, Article 2710.10.3389/fmicb.2019.02710Search in Google Scholar PubMed PubMed Central

Debaille, V., O’Neill, C., Brandon, A.D., Haenecour, P., Yin, Q.-Z., Mattielli, N., and Treiman, A.H. (2013) Stagnant-lid tectonics in early Earth revealed by 142Nd variations in late Archean rocks. Earth and Planetary Science Letters, 373, 83–92.10.1016/j.epsl.2013.04.016Search in Google Scholar

Deer, W.A., Howie, R.A., and Zussman, J. (1982–2013) Rock-Forming Minerals, second edition, 11 volumes. Wiley.Search in Google Scholar

Deer, W.A., Howie, R.A., Wise, W.S., and Zussman, J. (2004) Rock-Forming Minerals. Volume 4B, second edition. Framework Silicates: Silica Minerals, Feldspathoids and the Zeolites. Wiley.Search in Google Scholar

Delaney, M.L. (1998) Phosphorus accumulation in marine sediments and oceanic phosphorus cycle. Biogeochemical Cycles, 12, 563–572.10.1029/98GB02263Search in Google Scholar

Dhuime, B., Hawkesworth, C.J., Cawood, P.A., and Storey, C.D. (2012) A change in the geodynamics of continental growth 3 billion years ago. Science, 335, 1334–1336.10.1126/science.1216066Search in Google Scholar

Dick, H.J.B. (1989) Abyssal peridotites, very slow spreading ridges and ocean ridge magmatism. Geological Society, London, Special Publications, 42, 71–105.10.1144/GSL.SP.1989.042.01.06Search in Google Scholar

Dilek, Y. (2003) Ophiolite pulses, orogeny, and mantle plumes. Geological Society of London Special Publications, 218, 9–19.10.1144/GSL.SP.2003.218.01.02Search in Google Scholar

Dong, J., Fischer, R.A., Stixrude, L.P., and Lithgow-Bertelloni, C.R. (2021) Constraining the volume of Earth’s early oceans with a temperature-dependent mantle water storage capacity model. AGU Advances, 2e2020AV000323.10.1029/2020AV000323Search in Google Scholar

Douglas, S., and Yang, H. (2002) Mineral biosignatures in evaporites: Presence of rosickyite in an endoevaporitic microbial community from Death Valley, California. Geology, 30, 1075–1078.10.1130/0091-7613(2002)030<1075:MBIEPO>2.0.CO;2Search in Google Scholar

Dove, P.M. (2010) The rise of skeletal biomineralization. Elements, 6, 37–42.10.2113/gselements.6.1.37Search in Google Scholar

Dove, P.M., De Yore, J.J., and Weiner, S., Eds. (2003) Biomineralization. Reviews in Mineralogy and Geochemistry, 54.10.1515/9781501509346Search in Google Scholar

Downes, H., Wall, F., Demy, A., and Szabo, C. (2012) Continuing the carbonatite controversy. Mineralogical Magazine, 76, 255–257.10.1180/minmag.2012.076.2.01Search in Google Scholar

Dumitraşcu, D., Acalovschi, M., Marza, I., and Suciu, A. (1984) Gallstones— Mineralogical and chemical investigations. La Revue de Medecine Interne, 22, 209–212.Search in Google Scholar

Ebel, D.S., and Kamilli, R.J. (2018) Paragenesis. In W.M. White, Ed., Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer.10.1007/978-3-319-39312-4_304Search in Google Scholar

Eiler, J.M. (2007) On the origin of granites. Science, 315, 951–952.10.1126/science.1138065Search in Google Scholar

El Goresy, A., Zinner, E., Matsunami, S., Palme, H., Spettel, B., Lin, Y., and Nazarov, M. (2002) Efremovka 101.1: A CAI with ultra-refractory REE patterns and enormous enrichments of Sc, Zr, and Y in fassaite and perovskite. Geochimica et Cosmochimica Acta, 66, 1459–1491.10.1016/S0016-7037(01)00854-7Search in Google Scholar

Elkins-Tanton, L.T. (2011) Formation of early water oceans on rocky planets. Astrophysics and Space Science, 332, 359–364.10.1007/s10509-010-0535-3Search in Google Scholar

Endo, K. (1962) A mineralogical investigation of gall stone. Tohoku Journal of Experimental Medicine, 76, 326–349.10.1620/tjem.76.326Search in Google Scholar PubMed

Endo, K., Kogure, T., and Nagasawa, H. (2018) Biomineralization: From Molecular and Nano-structural Analyses to Environmental Science. Springer.10.1007/978-981-13-1002-7Search in Google Scholar

Ensikat, H.-J., Geisler, T., and Weigend, M. (2016) A first report of hydroxylated apatite as structural biomineral in Loasaceae—Plant’s teeth against herbivores. Scientific Reports, 6, Article 26073.10.1038/srep26073Search in Google Scholar PubMed PubMed Central

Ereshefsky, M. (2014) Species, historicity, and path dependency. Philosophy of Science, 81, 714–726.10.1086/677202Search in Google Scholar

Ernst, R.E. (2014) Large Igneous Provinces. Cambridge University Press.10.1017/CBO9781139025300Search in Google Scholar

Essene, E.J., and Fisher, D.C. (1986) Lightning strike fusion: Extreme reduction and metal-silicate immiscibility. Science, 234, 189–193.10.1126/science.234.4773.189Search in Google Scholar PubMed

Falkowski, P., Scholes, R.J., Boyle, E., Canadell, J., Canfield, D., Elser, J., Gruber, N., Hibbard, K., Högberg, P., Linder, S., and others (2000) The global carbon cycle: A test of our knowledge of Earth as a system. Science, 290, 291–296.10.1126/science.290.5490.291Search in Google Scholar PubMed

Farquhar, J., Bao, H., and Thiemens, M.H. (2000) Atmospheric influence of Earth’s earliest sulfur cycle. Science, 289, 756–758.10.1126/science.289.5480.756Search in Google Scholar PubMed

Farquhar, J., Savarino, I., Airieau, S., and Thiemens, M.H. (2001) Observations of wavelength-sensitive, mass-independent sulfur isotope effects during SO2 photolysis: Implications for the early atmosphere. Journal of Geophysical Research, 106, 1–11.10.1029/2000JE001437Search in Google Scholar

Farquhar, J., Peters, M., Johnston, D.T., Strauss, H., Masterson, A., Wiechert, U., and Kaufman, A.J. (2007) Isotopic evidence for Mesoarchean anoxia and changing atmospheric sulphur chemistry. Nature, 449, 706–709.10.1038/nature06202Search in Google Scholar PubMed

Fayek, M.J., Utsunomiya, S., Pfiffner, S.M., Anovitz, L.M., White, D.C., Riciputi, L.R., Ewing, R.C., and Stadermann, F.J. (2005) Nanoscale chemical and isotopic characterization of Geobacter sulfurreducens surfaces and bio-precipitated uranium minerals. Canadian Mineralogist, 43, 1631–1641.10.2113/gscanmin.43.5.1631Search in Google Scholar

Fike, D.A., Grotzinger, J.P., Pratt, L.M., and Summons, R.E. (2006) Oxidation of the Ediacaran ocean. Nature, 444, 744–747.10.1038/nature05345Search in Google Scholar PubMed

Finch, R.J., and Murakami, T. (1999) Systematics and paragenesis of uranium minerals. Reviews in Mineralogy, 38, 91–180.10.1515/9781501509193-008Search in Google Scholar

Frankel, R.B., and Bazylinski, D.A. (2003) Biologically induced mineralization by bacteria. In P.M. Dove, J.J. DeYoreo, and S. Weiner, Eds., Biomineralization. Reviews in Mineralogy and Geochemistry, 54, 95–114.10.1515/9781501509346-009Search in Google Scholar

Frondel, C. (1958) Systematic Mineralogy of Uranium and Thorium. United States Geological Survey Bulletin, 1064, 400 p.Search in Google Scholar

Furnes, H., de Witt, M., Staudigel, H., Rosing, M., and Muehlenbachs, K. (2007) A vestige of Earth’s oldest ophiolite. Science, 315, 1704–1707.10.1126/science.1139170Search in Google Scholar PubMed

Galezowski, L., Recham, N., Larcher, D., Miot, J., Skouri-Panet, F., and Guyot, F. (2020) Microbially induced mineralization of layered Mn oxides electroactive in Li batteries. Frontiers in Microbiology, 11, Article 2031.10.3389/fmicb.2020.02031Search in Google Scholar PubMed PubMed Central

Garvie, L.A.J. (2003) Decay-induced biomineralization of saguaro cactus (Carnegiea gigantea). American Mineralogist, 88, 1879–1888.10.2138/am-2003-11-1231Search in Google Scholar

Genceli Güner, F.E., Sakurai, T., and Hondoh, T. (2013) Ernstburkeite. Mg(CH3SO3)2.12H2O, a new mineral from Antarctica. European Journal of Mineralogy, 25, 79–84.10.1127/0935-1221/2013/0025-2257Search in Google Scholar

Giannossi, M.L., Mongelli, G., and Summa, V. (2009) The mineralogy and internal structure of kidney stones. NDT Plus, 2, 418–419.10.1093/ndtplus/sfp066Search in Google Scholar

Gibb, E.L., Whittet, D.C.B., Boogert, A.C.A., and Tielens, A.G.G.M. (2004) Interstellar ice: The Infrared Space Observatory legacy. The Astrophysical Journal Supplement Series, 151, 35–73.10.1086/381182Search in Google Scholar

Gleeson, D.F., Williamson, C., Grasby, S.E., Pappalardo, R.T., Spear, J.R., and Templeton, A. S. (2011) Low temperature S0 biomineralization at a supraglacial spring system in the Canadian high Arctic. Geobiology, 9, 360–375.10.1111/j.1472-4669.2011.00283.xSearch in Google Scholar

Godman, M. (2019) Scientific realism with historical essences: The case of species. Synthese, 198, 3041–3057.10.1007/s11229-018-02034-3Search in Google Scholar

Golden, J. J. (2020) Mineral evolution database: Data model for mineral age associations. MS Thesis, Department of Geosciences, University of Arizona.Search in Google Scholar

Golden, J. J., Pires, A.J., Hazen, R.M., Downs, R. T., Ralph, J., and Meyer, M. (2016) Building the Mineral evolution database: Implications for future big data analysis. Proceedings of the Geological Society of America Annual Meeting Abstracts with Programs.10.1130/abs/2016AM-286024Search in Google Scholar

Goldfarb, R.J., Groves, D.I., and Gardoll, S. (2001) Orogenic gold and geologic time: a global synthesis. Ore Geology Reviews, 18, 1–75.10.1016/S0169-1368(01)00016-6Search in Google Scholar

Grapes, R. (2005) Pyrometamorphism. Second Edition. Springer.Search in Google Scholar

Greber, N.D., Dauphas, N., Bekker, A., Ptacek, M.P., Bindeman, I.N., and Hofmann, A. (2017) Titanium isotopic evidence for felsic crust and plate tectonics 3.5 billion years ago. Science, 357, 1271–1274.10.1126/science.aan8086Search in Google Scholar PubMed

Greenberg, J.M. (1991) Interstellar dust-gas relationships. In M.M. Shapiro, R. Silberberg, and J.P. Wefel, Eds., Cosmic Rays, Supernovae, and the Interstellar Medium. NATO ASI Series: Mathematical and Physical Sciences, 120, 57–68.10.1007/978-94-011-3158-2_3Search in Google Scholar

Grew, E.S., and Hazen, R.M. (2014) Beryllium mineral evolution. American Mineralogist, 99, 999–1021.10.2138/am.2014.4675Search in Google Scholar

Grew, E.S., Bada, J.L., and Hazen, R.M. (2011) Borate minerals and the origin of the RNA world. Origins of Life and Evolution of the Biosphere: The Journal of the International Society for the Study of the Origin of Life, 41, 307–316.10.1007/s11084-010-9233-ySearch in Google Scholar PubMed

Grew, E.S., Dymek, R.F., De Hoog, J.C.M., Harley, S.L., Boak, J.M., Hazen, R.M., and Yates, M.G. (2015) Boron isotopes in tourmaline from the 3.7–3.8 Ga Isua Belt, Greenland: Sources for boron in Eoarchean continental crust and seawater. Geochimica et Cosmochimica Acta, 163, 156–177.10.1016/j.gca.2015.04.045Search in Google Scholar

Grew, E.S., Krivovichev, S.V., Hazen, R.M., and Hystad, G. (2016) Evolution of structural complexity in boron minerals. Canadian Mineralogist, 54, 125–143.10.3749/canmin.1500072Search in Google Scholar

Grew, E. S., Hystad, G., Hazen, R.M., Golden, J., Krivovichev, S.V., and Gorelova, L.A. (2017) How many boron minerals occur in Earth’s upper crust? American Mineralogist, 102, 1573–1587.10.2138/am-2017-5897Search in Google Scholar

Grew, E.S., Hystad, G., Toapanta, M., Eleish, A., Ostroverkhova, A., Golden, J., and Hazen, R.M. (2019) Lithium mineral evolution and ecology: Comparison with boron and beryllium. European Journal of Mineralogy, 31, 755–774.10.1127/ejm/2019/0031-2862Search in Google Scholar

Gross, S. (1977) The mineralogy of the Hatrurim Formation, Israel. Geological Survey of Israel, Bulletin no. 70, 80 pp.Search in Google Scholar

Grotzinger, J.P., and Knoll, A.H. (1999) Stromatolites in Precambrian carbonates: Evolutionary mileposts or environmental dipsticks. Annual Review of Earth and Planetary Sciences, 27, 313–358.10.1146/annurev.earth.27.1.313Search in Google Scholar PubMed

Groves, D.I., Vielreicher, R.M., Goldfarb, R.J., and Condie, K.C. (2005) Controls on the heterogeneous distribution of mineral deposits through time. Geological Society of London Special Publications, 248, 71–101.10.1144/GSL.SP.2005.248.01.04Search in Google Scholar

Groves, D.I., Bierlein, F.P., Meinert, L.D., and Hitzman, M.W. (2010) Iron oxide copper-gold (IOCG) deposits through Earth history: Implications for origin, lithospheric setting, and distinction from other epigenetic iron oxide deposits. Economic Geology, 105, 641–654.10.2113/gsecongeo.105.3.641Search in Google Scholar

Guilbert, J.M., and Park, C.F. Jr. (2007) The Geology of Ore Deposits. Waveland Press.Search in Google Scholar

Guo, M., and Korenaga, J. (2020) Argon constraints on the early growth of felsic continental crust. Science Advances, 6, eaaz6234.10.1126/sciadv.aaz6234Search in Google Scholar PubMed PubMed Central

Hacker, B.R. (2006) Pressures and temperatures of ultrahigh-pressure metamorphism: Implications for UHP tectonics and H2O in subducting slabs. International Geology Review, 48, 1053–1066.10.2747/0020-6814.48.12.1053Search in Google Scholar

Harlov, D.E., and Austrheim, H. (2013) Metasomatism and the Chemical Transformation of Rock: Rock-Mineral-Fluid Interactions in Terrestrial and Extraterrestrial Environments. Springer-Verlag.10.1007/978-3-642-28394-9Search in Google Scholar

Hatert, F., Mills, S.J., Hawthorne, F.C., and Rumsey, M.S. (2021) A comment on “An evolutionary system of mineralogy: Proposal for a classification of planetary materials based on natural kind clustering.” American Mineralogist, 106, 150–153.10.2138/am-2021-7590Search in Google Scholar

Hawley, K., and Bird, A. (2011) What are natural kinds? Philosophical Perspectives, 25, 205–221.10.1111/j.1520-8583.2011.00212.xSearch in Google Scholar

Haymon, R.M., and Kastner, M. (1981) Hot spring deposits on the East Pacific Rise at 21°N: Preliminary description of mineralogy and genesis. Earth and Planetary Science Letters, 53, 363–381.10.1016/0012-821X(81)90041-8Search in Google Scholar

Hazen, R.M. (2013) Paleomineralogy of the Hadean Eon: A preliminary list. American Journal of Science, 313, 807–843.10.2475/09.2013.01Search in Google Scholar

Hazen, R.M. (2014) Data-driven abductive discovery in mineralogy. American Mineralogist, 99, 2165–2170.10.2138/am-2014-4895Search in Google Scholar

Hazen, R.M. (2015) Mineral evolution, the Great Oxidation Event, and the rise of colorful minerals. Mineralogical Record, 46(6), 805–816. 834.Search in Google Scholar

Hazen, R.M. (2017) Chance, necessity, and the origins of life: A physical sciences perspective. Philosophical Transactions of the Royal Society, A375, 20160353.10.1098/rsta.2016.0353Search in Google Scholar PubMed PubMed Central

Hazen, R.M. (2018) Titan mineralogy: Insights on organic mineral evolution. American Mineralogist, 103, 341–342.10.2138/am-2018-6407Search in Google Scholar

Hazen, R.M. (2019) An evolutionary system of mineralogy: Proposal for a classification based on natural kind clustering. American Mineralogist, 104, 810–816.10.2138/am-2019-6709CCBYNCNDSearch in Google Scholar

Hazen, R.M. (2021) Reply to “Comment on ‘An evolutionary system of mineralogy: Proposal for a classification based on natural kind clustering’.” American Mineralogist, 106, 154–156.10.2138/am-2021-7773Search in Google Scholar

Hazen, R.M., and Ausubel, J.H. (2016) On the nature and significance of rarity in mineralogy. American Mineralogist, 101, 1245–1251.10.2138/am-2016-5601CCBYSearch in Google Scholar

Hazen, R.M., and Morrison, S.M. (2020) An evolutionary system of mineralogy, Part I: stellar mineralogy (>13 to 4.6 Ga). American Mineralogist, 105, 627–651.10.2138/am-2020-7173Search in Google Scholar PubMed PubMed Central

Hazen, R.M., and Morrison, S.M. (2021) An evolutionary system of mineralogy, Part V: Aqueous and thermal alteration of planetesimals (4.565 to 4.550 Ga). American Mineralogist, 106, 1388–1419.10.2138/am-2021-7760Search in Google Scholar

Hazen, R.M., and Zalaziewski, J. (2019) 2.1 Rock components—Synthetic mineral-like compounds. In: Zalaziewski, J. Waters, C.N. Williams, M. and Summerhayes, C. Eds., The Anthropocene as a Geologic Unit. Cambridge University Press, pp.42–46.Search in Google Scholar

Hazen, R.M., Papineau, D., Bleeker, W., Downs, R.T., Ferry, J.M., McCoy, T.J., Sverjensky, D.A., and Yang, H. (2008) Mineral evolution. American Mineralogist, 93, 1693–1720.10.2138/am.2008.2955Search in Google Scholar

Hazen, R.M., Ewing, R.J., and Sverjensky, D.A. (2009) Evolution of uranium and thorium minerals. American Mineralogist, 94, 1293–1311.10.2138/am.2009.3208Search in Google Scholar

Hazen, R.M., Golden, J., Downs, R. T., Hystad, G., Grew, E.S., Azzolini, D., and Sverjensky, D.A. (2012) Mercury (Hg) mineral evolution: A mineralogical record of supercontinent assembly, changing ocean geochemistry, and the emerging terrestrial biosphere. American Mineralogist, 97, 1013–1042.10.2138/am.2012.3922Search in Google Scholar

Hazen, R.M., Liu, X.-M., Downs, R.T., Golden, J.J., Pires, A.J., Grew, E.S., Hystad, G., Estrada, C., and Sverjensky, D.A. (2014) Mineral evolution: Episodic metallogenesis, the supercontinent cycle, and the coevolving geosphere and biosphere. Society of Economic Geologists Special Publication, 18, 1–15.10.5382/SP.18.01Search in Google Scholar

Hazen, R.M., Grew, E. S., Downs, R.T., Golden, J., and Hystad, G. (2015) Mineral ecology: Chance and necessity in the mineral diversity of terrestrial planets. Canadian Mineralogist, 53, 295–323.10.3749/canmin.1400086Search in Google Scholar

Hazen, R.M., Grew, E.S., Origlieri, M., and Downs, R.T. (2017) On the mineralogy of the “Anthropocene Epoch”. American Mineralogist, 102, 595–611.10.2138/am-2017-5875Search in Google Scholar

Hazen, R.M., Downs, R.T., Elesish, A., Fox, P., Gagné, O., Golden, J.J., Grew, E.S., Hummer, D.R., Hystad, G., Krivovichev, S.V., and others. (2019) Data-driven discovery in mineralogy: Recent advances in data resources, analysis, and visualization. China Engineering, 5, 397–405.10.1016/j.eng.2019.03.006Search in Google Scholar

Hazen, R.M., Morrison, S.M., and Prabhu, A. (2021) An evolutionary system of mineralogy, Part III: Primary chondrule mineralogy (4.566 to 4.561 Ga.). American Mineralogist, 106, 325–350.10.2138/am-2020-7564Search in Google Scholar

Heaman, L.W., Phillips, D., and Pearson, D.G. (2019) Dating kimberlites: Methods and emplacement patterns through time. Elements, 15, 399–406.10.2138/gselements.15.6.399Search in Google Scholar

Heck, P.R., Greer, J., Kööp, L., Trappitsch, R., Gyngard, F., Busemann, H., Maden, C., Ávila, J.N., Davis, A.M., and Wieler, R. (2020) Lifetimes of interstellar dust from cosmic ray exposure ages of presolar grains. Proceedings of the National Academy of Sciences, 117 (4), 1884–1889. DOI: 10.1073/pnas.1904573117.10.1073/pnas.1904573117Search in Google Scholar

Heinrich, C.A., and Henley, R.W. (1989) Hydrothermal Systems. Australian Mineral Foundation.Search in Google Scholar

Hekinian, R., Fevrier, M., Bischoff, J.L., Picot, P., and Shanks, W.C. (1980) Sulfide deposits from the East Pacific Rise near 21 N. Science, 207, 1433–1444.10.1126/science.207.4438.1433Search in Google Scholar

Helgren, D.M., and Butzer, K.W. (1977) Paleosols of the Southern Cape Coast, South Africa: Implications for laterite definition, genesis, and age. Geographical Review, 67, 430–445.10.2307/213626Search in Google Scholar

Hess, B.L., Piazolo, S., and Harvey, J. (2021) Lightning strikes as a major facilitator of prebiotic phosphorus reduction on early Earth. Nature Communications, 12, Article 1535.10.1038/s41467-021-21849-2Search in Google Scholar

Hill, C., and Forti, P. (1997) Cave Minerals of the World. Second Edition. National Speleological Society.Search in Google Scholar

Hill, I.G., Worden, R.H., and Meighan, I.G. (2000) Geochemical evolution of a palaeolaterite: The Interbasaltic Formation. Northern Ireland. Chemical Geology, 166, 65–84.10.1016/S0009-2541(99)00179-5Search in Google Scholar

Hlawatsch, S., Neumann, T., van den Berg, C.M.G., Kersten, M., Harff, J., and Suess, E. (2002) Fast-growing, shallow-water ferro-manganese nodules from the western Baltic Sea: origin and modes of trace element incorporation. Marine Geology, 182, 373–387.10.1016/S0025-3227(01)00244-4Search in Google Scholar

Hoffman, P.F., Kaufman, A.J., Halverson, G.P., and Schrag, D.P. (1998) A Neoproterozoic snowball Earth. Science, 281, 1342–1346.10.1126/science.281.5381.1342Search in Google Scholar PubMed

Holland, H.D. (1984) The Chemical Evolution of the Atmosphere and Oceans. Princeton University Press.10.1515/9780691220239Search in Google Scholar

Holland, H.D., Rye, R., and Ohmoto, H. (1997) Evidence in pre-2.2 Ga Paleosols for the early evolution of atmospheric oxygen and terrestrial biota; discussion and reply. Geology, 25, 857–859.10.1130/0091-7613(1997)025<0857:EIPGPF>2.3.CO;2Search in Google Scholar

Holm, N.G., Oze, C., Mousis, O., Waite, J.H., and Guilbert-Lepoutre, A. (2015) Serpentinization and the formation of H2 and CH4 on celestial bodies (planets, moons, comets). Astrobiology, 15, 587–600.10.1089/ast.2014.1188Search in Google Scholar

Hopkins, M., Harrison, T.M., and Manning, C.E. (2008) Low heat flow inferred from >4 Gyr zircons suggest Hadean plate boundary interactions. Nature, 456, 493–496.10.1038/nature07465Search in Google Scholar

Huston, D.L., Pehrsson, S., Eglington, B.M., and Zaw, K. (2010) The geology and metallogeny of volcanic-hosted massive sulfide deposits: Variations through geologic time and with tectonic setting. Economic Geology, 105, 571–591.10.2113/gsecongeo.105.3.571Search in Google Scholar

Hystad, G., Downs, R. T., and Hazen, R.M. (2015) Mineral frequency distribution data conform to a LNRE model: Prediction of Earth’s “missing” minerals. Mathematical Geosciences, 47, 647–661.10.1007/s11004-015-9600-3Search in Google Scholar

Ishibashi, J.-I., Okino, K., and Sunamura, M., Eds. (2015) Subseafloor Biosphere Linked to Hydrothermal Systems. Springer.10.1007/978-4-431-54865-2Search in Google Scholar

Isley, A.E., and Abbott, D.H. (1999) Plume-related mafic volcanism and the deposition of banded iron formation. Journal of Geophysical Research, 104, 15461–15477.10.1029/1999JB900066Search in Google Scholar

Jabłońska, J., and Tawfik, D.S. (2021) The evolution of oxygen-utilizing enzymes suggests early biosphere oxygenation. Nature Ecology & Evolution, 5, 442–448. https://doi.org/10.1038/s41559-020-01386-9.https://doi.org/10.1038/s41559-020-01386-9Search in Google Scholar

Jahn, B.-M., Caby, R., and Monie, P. (2001) The oldest UHP eclogites of the World: age of UHP metamorphism, nature of protoliths and tectonic implications. Chemical Geology, 178, 143–158.10.1016/S0009-2541(01)00264-9Search in Google Scholar

Jarrard, R.D. (2003) Subduction fluxes of water, carbon dioxide, chlorine, and potassium. Geochemistry Geophysics Geosystems, 4, 8905.10.1029/2002GC000392Search in Google Scholar

Jenkin, G.R.T., Lusty, P.A.J., McDonald, I., Smith, M.P., Boyce, A.J., and Wilkinson, J.J. (2015) Ore Deposits in an Evolving Earth. Geological Society of London Special Publication, 393, 1–8.10.1144/SP393.14Search in Google Scholar

Johannsen, A. (1932–1938) A Descriptive Petrography of the Igneous Rocks: 4 Volumes. University of Chicago Press.Search in Google Scholar

Johnson, D., and Watson-Stegner, D. (1987) Evolution model of pedogenesis. Soil Science, 143, 349–366.10.1097/00010694-198705000-00005Search in Google Scholar

Johnson, T.E., Brown, M., Gardiner, N.J., Kirkland, C.L., and Smithies, R.H. (2017) Earth’s first stable continents did not form by subduction. Nature, 543, 239–242.10.1038/nature21383Search in Google Scholar PubMed

Johnson, S., Graham, H., Des Marais, D.J., and Hazen, R.M. (2020) Detecting life on Earth and the limits of analogy. In V. Meadows, Ed., Planetary Astrobiology, pp. 121–150. University of Arizona Press.Search in Google Scholar

Johnston, C.W., Wyatt, M.A., Li, X., Ibrahim, A., Shuster, J., Southam, G., and Magarvey, N.A. (2013) Gold biomineralization by a metallophore from a gold-associated microbe. Nature Chemical Biology, 9, 241–243.10.1038/nchembio.1179Search in Google Scholar PubMed

Jones, A.P., Genge, M., and Carmody, L. (2013) Carbonate melts and carbonatites. Reviews in Mineralogy and Geochemistry, 75, 289–322.10.1515/9781501508318-012Search in Google Scholar

Kappler, A., Pasquero, C., Konhauser, K.O., and Newman, D.K. (2005) Deposition of banded iron formations by photoautotrophic Fe(II)-oxidizing bacteria. Geology, 33, 865–868.10.1130/G21658.1Search in Google Scholar

Kattimani, V.S., Kondaka, S., and Lingamaneni, K.P. (2016) Hydroxyapatite— Past, present, and future in bone regeneration. Bone and Tissue Regeneration Insights, 7, BTRI.S36138–19.10.4137/BTRI.S36138Search in Google Scholar

Keim, C.N., Nalini, H.A., and de Lena, J.C. (2015) Manganese oxide biominerals from freshwater environments in Quadrilatero Ferrifero, Minas Gerais, Brazil. Geomicrobiology Journal, 32, 549–559.10.1080/01490451.2014.978513Search in Google Scholar

Keller, C.B., and Schoene, B. (2012) Statistical geochemistry reveals disruption in secular lithospheric evolution about 2.5 Gyr ago. Nature, 485, 490–493.10.1038/nature11024Search in Google Scholar PubMed

Kemp, A.I.S., and Hawkesworth, C.J. (2003) Granitic perspectives on the generation and secular evolution of the continental crust. In H.D. Holland and K.K. Turekian, Treatise on Geochemistry, vol. 3, p. 349–410. Elsevier.10.1016/B0-08-043751-6/03027-9Search in Google Scholar

Kemp, A.I.S., Hawkesworth, C.J., Foster, G.L., Paterson, B.A., Woodhead, J.D., Hergt, J.M., Gray, C.M., and Whitehouse, M.J. (2007) Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science, 315, 980–983.10.1126/science.1136154Search in Google Scholar

Kennedy, M., Droser, M., Mayer, L.M., Pevear, D., and Mrofka, D. (2006) Late Precambrian oxygenation; Inception of the clay mineral factory. Science, 311, 1446–1449.10.1126/science.1118929Search in Google Scholar

Khalidi, M.A. (2013) Natural Categories and Human Kinds: Classification in the Natural and Social Sciences. Cambridge University Press.10.1017/CBO9780511998553Search in Google Scholar

Kierczak, J., and Ettler, V. (2021) Editorial for special issue “Metallurgical slags”. Minerals, 11, 24p.10.3390/min11010024Search in Google Scholar

Kim, J.D., Yee, N., Nanda, V., and Falkowski, P.G. (2013) Anoxic photochemical oxidation of siderite generates molecular hydrogen and iron oxides. Proceedings of the National Academy of Sciences, 110, 10073–10077.10.1073/pnas.1308958110Search in Google Scholar

Kirschvink, J.L. (1992) Late Proterozoic low-latitude global glaciation: The snowball Earth. In J.W. Schopf and C. Klein, Eds., The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge University Press, 51–52.Search in Google Scholar

Klein, C. (2005) Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins. American Mineralogist, 90, 1473–1499.10.2138/am.2005.1871Search in Google Scholar

Knauth, L.P. (2005) Temperature and salinity history of the Precambrian Ocean: Implications for the course of microbial evolution. Paleogeography Paleoclimatology Paleoecology, 219, 53–69.10.1016/B978-0-444-52019-7.50007-3Search in Google Scholar

Konhauser, K.O., Hamade, T., Raiswell, R., Morris, R.C., Ferris, F.G., Southam, G., and Canfield, D.E. (2002) Could bacteria have formed the Precambrian banded iron-formations? Geology, 30, 1079–1082.10.1130/0091-7613(2002)030<1079:CBHFTP>2.0.CO;2Search in Google Scholar

Korenaga, J. (2008) Plate tectonics, flood basalts, and the evolution of Earth’s oceans. Terra Nova, 20, 419–439.10.1111/j.1365-3121.2008.00843.xSearch in Google Scholar

Korenaga, J. (2018) Crustal evolution and mantle dynamics through Earth history. Philosophical Transactions of the Royal Society, A376, 20170408.10.1098/rsta.2017.0408Search in Google Scholar

Korenaga, J. (2021) Hadean geodynamics and the nature of early continental crust. Precambrian Research, 359, 106178.10.1016/j.precamres.2021.106178Search in Google Scholar

Korenaga, J., Planavsky, N.J., and Evans, D.A.D. (2017) Global water cycle and the coevolution of Earth’s interior and surface environment. Philosophical Transactions of the Royal Society, A375, 20150393.10.1098/rsta.2015.0393Search in Google Scholar PubMed PubMed Central

Krivovichev, S.V. (2012) Topological complexity of crystal structures: quantitative approach. Acta Crystallographica, A68, 393–398.10.1107/S0108767312012044Search in Google Scholar PubMed

Krivovichev, S.V. (2013) Structural complexity of minerals: information storage and processing in the mineral world. Mineralogical Magazine, 77, 275–326.10.1180/minmag.2013.077.3.05Search in Google Scholar

Krivovichev, S.V. (2014) Which inorganic structures are the most complex? Angewandte Chemie (International ed. in English), 53, 654–661.Search in Google Scholar

Krivovichev, S.V. (2015) Structural complexity of minerals and mineral parageneses: information and its evolution in the mineral world. In R. Danisi and T. Armbruster, Eds., Highlights in Mineralogical Crystallography, p. 31–73. De Gruyter.10.1515/9783110417104-004Search in Google Scholar

Krivovichev, S.V. (2016) Structural complexity and configurational entropy of crystalline solids. Acta Crystallographica, B72, 274–276.Search in Google Scholar

Krivovichev, S.V., Mentré, O., Siidra, O.I., Colmont, M., and Filatov, S.K. (2013) Anion-centered tetrahedra in inorganic compounds. Chemical Reviews, 113, 6459–6535.10.1021/cr3004696Search in Google Scholar PubMed

Krivovichev, S.V., Krivovichev, V.G., and Hazen, R.M. (2018) Structural and chemical complexity of minerals: correlations and time evolution. European Journal of Mineralogy, 30, 231–236.10.1127/ejm/2018/0030-2694Search in Google Scholar

Krot, A.N., Scott, E.R.D., and Zolensky, M.E. (1995) Mineralogical and chemical modification of components in CV3 chondrites: Nebular or asteroidal processing? Meteoritics, 30, 748–775.10.1111/j.1945-5100.1995.tb01173.xSearch in Google Scholar

Krot, A.N., Petaev, M.I., Russell, S.S., Itoh, S., Fagan, T.J., Yurimoto, H., Chizmadia, L., Weisberg, M.K., Komatsu, M., Ulyanov, A.A., and Keil, K. (2004) Amoeboid olivine aggregates and related objects in carbonaceous chondrites: Records of nebular and asteroid processes. Geochemistry, 64, 185–239.10.1016/j.chemer.2004.05.001Search in Google Scholar

Krot, A.N., Keil, K., Scott, E.R.D., Goodrich, C.A., and Weisberg, M.K. (2014) Classification of meteorites and their genetic relationships. H.D. Holland and K.K. Turekian, Treatise on Geochemistry, 2nd ed., 1, 2–63.10.1016/B978-0-08-095975-7.00102-9Search in Google Scholar

Kruszewski, Ł. (2013) Supergene minerals from the burning coal mining dumps in the Upper Silesian Coal Basin, South Poland. International Journal of Coal Geology, 105, 91–109.10.1016/j.coal.2012.12.007Search in Google Scholar

Kurokawa, H., Foriel, J., Laneuville, M., Houser, C., and Usui, T. (2018) Subduction and atmospheric escape of Earth’s seawater constrained by hydrogen isotopes. Earth and Planetary Science Letters, 497, 149–160.10.1016/j.epsl.2018.06.016Search in Google Scholar

Kusky, T.M., Ed. (2004) Precambrian Ophiolites and Related Rocks. Elsevier.Search in Google Scholar

Kusky, T.M., and Zhai, M. (2012) The Neoarchean ophiolite in the North China craton: Early Precambrian plate tectonics and scientific debate. Journal of Earth Science, 23, 277–284.10.1007/s12583-012-0253-6Search in Google Scholar

Kusky, T.M., Li, J.-H., and Tucker, R.D. (2001) The Archean Dongwanzi ophiolite complex, North China craton: 2.505 billion year old oceanic crust and mantle. Science, 295, 1142–1145.10.1126/science.1059426Search in Google Scholar PubMed

Lafuente, B., Downs, R. T., Yang, H., and Stone, N. (2015) The power of databases: the RRUFF project. In T. Armbruster and R.M. Danisi, Eds., Highlights in Mineralogical Crystallography, p. 1–30. De Gruyter.10.1515/9783110417104-003Search in Google Scholar

Lambart, S.L., Baker, M.B., and Stolper, E.M. (2016) The role of pyroxenite in basalt genesis: Melt-PX, a melting parameterization for mantle pyroxenites between 0.9 and 5 GPa. Journal of Geophysical Research: Solid Earth, 121, 5708–5735.10.1002/2015JB012762Search in Google Scholar

Lapham, D.M., Barns, J.H., Downey, W. Jr., and Finkelman, R.B. (1980) Mineralogy associated with burning Anthracite deposits of Eastern Pennsylvania. Commonwealth of Pennsylvania, Department of Environmental Resources. Bureau of Topographic and Geologic Survey, Mineral Resources Report, 78, 82 pp.Search in Google Scholar

Laznicka, P. (1973) Development of nonferrous metal deposits in geological time. Canadian Journal of Earth Sciences, 10, 18–25.10.1139/e73-002Search in Google Scholar

Le Bas, M.J., and Streckeisen, A.L. (1991) The IUGS systematics of igneous rocks. Journal of the Geological Society, 148, 825–833.10.1144/gsjgs.148.5.0825Search in Google Scholar

Le Bas, M. J.L., Maitre, R.W.L., Streckeisen, A., and Zanettin, B. (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. IUGS Subcommission on the Systematics of Igneous Rocks. Journal of Petrology, 27(3), 745–750.10.1093/petrology/27.3.745Search in Google Scholar

Leach, D.L., Bradley, D.C., Huston, D., Pisarevsky, S.A., Taylor, R.D., and Gardoll, S.J. (2010) Sediment-hosted lead-zinc deposits in Earth history. Economic Geology, 105, 593–625.10.2113/gsecongeo.105.3.593Search in Google Scholar

Lepot, K., Benzerara, K., Brown, G.E., and Philippot, P. (2008) Microbially influenced formation of 2,724-million-year-old stromatolites. Nature Geoscience, 1, 118–114.10.1038/ngeo107Search in Google Scholar

Li, Q., and Gadd, G.M. (2017) Biosynthesis of copper carbonate nanoparticles by ureolytic fungi. Applied Microbiology and Biotechnology, 101, 7397–7407.10.1007/s00253-017-8451-xSearch in Google Scholar PubMed PubMed Central

Li, Q., Liu, D., Jia, Z., Csetenyi, L., and Gadd, G.M. (2016) Fungal biomineralization of manganese as a novel source of electrochemical materials. Current Biology, 26, 950–955.10.1016/j.cub.2016.01.068Search in Google Scholar PubMed

Liang, X., Hillier, S., Pendlowski, H., Gray, N., Ceci, A., and Gadd, G.M. (2015) Uranium phosphate biomineralization by fungi. Environmental Microbiology, 17, 2064–2075.10.1111/1462-2920.12771Search in Google Scholar PubMed

Lichtenegger, H.C., Schöberl, T., Bartl, M.H., Waite, H., and Stucky, G.D. (2002) High abrasion resistance with sparse mineralization: Copper biomineral in worm jaws. Science, 298, 389–392.10.1126/science.1075433Search in Google Scholar PubMed

Lins, U., Keim, C.N., Evans, F.F., Farina, M., and Buseck, P.R. (2007) Magnetite (Fe3O4) and greigite (Fe3S4) crystals in magnetotactic multicellular organisms. Geomicrobiology Journal, 24, 43–50.10.1080/01490450601134317Search in Google Scholar

Liu, C., Runyon, S.E., Knoll, A.H., and Hazen, R.M. (2019) The same and not the same: Ore geology, mineralogy and geochemistry of Rodinia assembly versus other supercontinents. Earth-Science Reviews, 196, 102860.10.1016/j.earscirev.2019.05.004Search in Google Scholar

London, D. (2008) Pegmatites. Mineralogical Association of Canada Special Publication, 10, 347 p.10.1016/B978-0-12-409548-9.12489-3Search in Google Scholar

Lowell, R.P., and Rona, P.A. (2002) Seafloor hydrothermal systems driven by the serpentinization of peridotite. Geophysical Research Letters, 29, 1–5.10.1029/2001GL014411Search in Google Scholar

Lowell, R.P., Seewald, J.S., Metaxas, A., and Perfit, M.R., Eds. (2008) Magma to Microbe Modeling Hydrothermal Processes at Oceanic Spreading Centers. American Geophysical Union Monograph Series, 178.Search in Google Scholar

Lowenstam, H.A., and Weiner, S. (1989) On Biomineralization. Oxford University Press.10.1093/oso/9780195049770.001.0001Search in Google Scholar

Lu, A., Li, Y., Liu, F., Liu, Y., Ye, H., Zhuang, Z., Li, Y., Ding, H., and Wang, C. (2021) The photogeochemical cycle of Mn oxides on the Earth’s surface. Mineralogical Magazine, 85, 22–38.10.1180/mgm.2021.10Search in Google Scholar

Luth, R.W. (2003) Mantle volatiles—Distribution and consequences. In R.W. Carlson, Ed., The Mantle and Core, Elsevier-Pergamon, pp. 319–361.10.1016/B0-08-043751-6/02124-1Search in Google Scholar

Lyons, T.W., Reinhard, C.T., and Planavsky, N.J. (2014) The rise of oxygen in Earth’s early ocean and atmosphere. Nature, 506, 307–314.10.1038/nature13068Search in Google Scholar

Lysyuk, G.N. (2008) Biomineral nanostructures of manganese oxides in oceanic ferromanganese nodules. Geology of Ore Deposits, 50, 647–649.10.1134/S1075701508070179Search in Google Scholar

MacPherson, G.J. (2014) Calcium-aluminum-rich inclusions in chondritic meteorites. In A.M. Davis, H.D. Holland, and K.K. Turekian, Eds., Treatise on Geochemistry, Vol. 1: Meteorites, Comets, and Planets, 2nd ed., p.139–179. Elsevier-Pergamon.10.1016/B978-0-08-095975-7.00105-4Search in Google Scholar

Magnus, P.D. (2012) Scientific Enquiry and Natural Kinds: From Mallards to Planets. Palgrave MacMillan.10.1057/9781137271259Search in Google Scholar

Maier, W.D., and Groves, D.I. (2011) Temporal and spatial controls on the formation of magmatic PGE and Ni-Cu deposits. Mineralium Deposita, 46, 841–857.10.1007/s00126-011-0339-6Search in Google Scholar

Manning, C.E., and Frezzotti, M.L. (2020) Subduction-zone fluids. Elements, 16, 395–400.10.2138/gselements.16.6.395Search in Google Scholar

Marks, M.A.W., and Markl, G. (2017) A global review on agpaitic rocks. Earth-Science Reviews, 173, 229–258.10.1016/j.earscirev.2017.06.002Search in Google Scholar

Marshall, K.C. (1979) Biogeochemistry of manganese minerals. Studies in Environmental Science, 3, 253–292.10.1016/S0166-1116(08)71061-6Search in Google Scholar

Marty, B., Avice, G., Bekaert, D.V., and Broadley, M.W. (2018) Salinity of the Archean oceans from analysis of fluid inclusions in quartz. Comptes Rendus Geoscience, 350, 154–163.10.1016/j.crte.2017.12.002Search in Google Scholar

Maynard-Casely, H.E., Cable, M.L., Malaska, M.J., Vu, T.H., Choukroun, M., and Hodyss, R. (2018) Prospects for mineralogy on Titan. American Mineralogist, 103, 343–349.10.2138/am-2018-6259Search in Google Scholar

McSween, H.Y. Jr., Sears, D.W.G., and Dodd, R.T. (1988) Thermal metamorphism. In Kerridge, J.F. and Matthews, M.S., Eds., Meteorites and the Early Solar System, p. 102–113. University of Arizona Press.Search in Google Scholar

Menez, B., Pisapia, C., Andreani, M., Jamme, F., Vanbellingen, Q.P., Brunelle, A., Richard, L., Dumas, P., and Refregiers, M. (2018) Abiotic synthesis of amino acids in the recesses of the oceanic lithosphere. Nature, 564, 59–63.10.1038/s41586-018-0684-zSearch in Google Scholar PubMed

Merlino, S., and Sartori, F. (1970) Santite, a new mineral phase from Larderello, Tuscany. Contributions to Mineralogy and Petrology, 27, 159–165.10.1007/BF00371981Search in Google Scholar

Meyer, C. (1988) Ore deposits as guides to geologic history of the Earth. Annual Review of Earth and Planetary Sciences, 16, 147–171.10.1146/annurev.ea.16.050188.001051Search in Google Scholar

Mikhailova, J.A., Ivanyuk, G.Y., Kalashnikov, A.O., Pakhomovsky, A.V.B., Bazai, A.V., and Yakovenchuk, V.N. (2019) Petrogenesis of the eudialyte complex of the Lovozero Alkaline Massif (Kola Peninsula, Russia). Minerals, 9, 581.10.3390/min9100581Search in Google Scholar

Mills, S.J., Hatert, F., Nickel, E.H., and Ferrais, G. (2009) The standardization of mineral group hierarchies: Application to recent nomenclature proposals. European Journal of Mineralogy, 21, 1073–1080.10.1127/0935-1221/2009/0021-1994Search in Google Scholar

Milton, C., Dworkin, E.J., Estep-Barnes, P.A., Finkelman, R.B., Pabst, A., and Palmer, S. (1978) Abelsonite, nickel porphyrin, a new mineral from the Green River Formation, Utah. American Mineralogist, 63, 930–937.Search in Google Scholar

Mitchell, R.H. (1986) Kimberlites: Mineralogy, Geochemistry, and Petrology. Springer.10.1007/978-1-4899-0568-0Search in Google Scholar

Mitchell, R.H., Giuliani, A., and O’Brien, H. (2019) What is a kimberlite? Petrology and mineralogy of hypabyssal kimberlites. Elements, 15, 381–386.10.2138/gselements.15.6.381Search in Google Scholar

Mittlefehldt, D.W. (2014) Achondrites. Treatise on Geochemistry, 2nd edition, 1, 235–266.10.1016/B978-0-08-095975-7.00108-XSearch in Google Scholar

Mittlefehldt, D.W., McCoy, T.J., Goodrich, C.A., and Kracher, A. (1998) Non-chondritic meteorites from asteroidal bodies. Reviews in Mineralogy, 36, 4.1–4.195.Search in Google Scholar

Mojzsis, S.J., Harrison, T.M., and Pidgeon, R.T. (2001) Oxygen-isotope evidence 1831 from ancient zircons for liquid water at the Earth’s surface 4,300 Myr ago. Nature, 409, 178–181.10.1038/35051557Search in Google Scholar

Moore, W.B., and Webb, A.A.G. (2013) Heat-pipe Earth. Nature, 501, 501–505.10.1038/nature12473Search in Google Scholar

Moores, E.M. (2002) Pre–1 Ga (pre-Rodinian) ophiolites: their tectonic and environmental implications. Geological Society of America Bulletin, 114, 80–95.10.1130/0016-7606(2002)114<0080:PGPROT>2.0.CO;2Search in Google Scholar

Morrison, S.M., and Hazen, R.M. (2020) An evolutionary system of mineralogy, Part II: Interstellar and solar nebula primary condensation mineralogy (>4.565 Ga). American Mineralogist, 105, 1508–1535.Search in Google Scholar

Morrison, S.M., and Hazen, R.M. (2021) An evolutionary system of mineralogy, Part IV: Planetesimal differentiation and impact mineralization (4.566 to 4.560 Ga). American Mineralogist, 106, 730–761.10.2138/am-2021-7632Search in Google Scholar

Morrison, S.M., Runyon, S.E., and Hazen, R.M. (2018) The paleomineralogy of the Hadean Eon revisited. Life, 8, 64. DOI: 10.3390/life8040064.10.3390/life8040064Search in Google Scholar

Morrison, S.M., Buongiorno, J., Downs, R.T., Eleish, A., Fox, P., Giovannelli, D., Golden, J.J., Hummer, D.R., Hystad, G., Kellogg, L.H., and others (2020) Exploring carbon mineral systems: Recent advances in C mineral evolution, mineral ecology, and network analysis. Frontiers in Earth Science, DOI: 10.3389/feart.2020.00208.10.3389/feart.2020.00208Search in Google Scholar

Moyen, J.-F., and van Hunen, J. (2012) Short-term episodicity of Archaean plate tectonics. Geology, 40, 451–454.10.1130/G322894.1Search in Google Scholar

Mukherjee, I., Large, R.R., Corkrey, R., and Danyushevsky, L.V. (2018) The boring billion, a slingshot for complex life on Earth. Scientific Reports, 8, 4432.10.1038/s41598-018-22695-xSearch in Google Scholar

Mungall, J.E., and Naldrett, A.J. (2008) Ore deposits of the platinum-group elements. Elements, 4, 253–258.10.2113/GSELEMENTS.4.4.253Search in Google Scholar

Mustoe, G.E. (2018) Mineralogy of non-silicified fossil wood. Geosciences, 8(3), Article 85.10.3390/geosciences8030085Search in Google Scholar

Naldrett, A.J., Cameron, G., von Gruenewaldt, G., and Sharpe, M.R. (1987) The formation of stratiform PGE deposits in layered intrusions. In I. Parson, Ed., Origins of Igneous Layering. Springer, pp. 313–397.10.1007/978-94-017-2509-5_10Search in Google Scholar

Nance, R.D., Murphy, J.B., and Santosh, M. (2014) The supercontinent cycle: A retrospective essay. Gondwana Research, 25, 4–29.10.1016/j.gr.2012.12.026Search in Google Scholar

Nash, J.T., Granger, H.C., and Adams, S.S. (1981) Geology and concepts of genesis of important types of uranium deposits. Economic Geology, 75th Anniversary Volume, 63–116.10.5382/AV75.04Search in Google Scholar

Nazarchuk, E.V., Siidra, O.I., Agakhanov, A.A., Lukina, E.A., Avdontseva, E.Y., and Karpov, G.A. (2018) Itelmenite, Na2CuMg2(SO4)4, a new anhydrous sulfate mineral from the Tolbachik volcano. Mineralogical Magazine, 82, 1233–1241.10.1180/minmag.2017.081.089Search in Google Scholar

Nickel, E.H., and Grice, J.D. (1998) The IMA Commission on New Minerals and Mineral Names: Procedures and guidelines on mineral nomenclature. Canadian Mineralogist, 36, 17–18.Search in Google Scholar

Nishimoto, S., and Yoshida, H. (2010) Hydrothermal alteration of deep-fractured granite: Effects of dissolution and precipitation. Lithos, 115, 153–162.10.1016/j.lithos.2009.11.015Search in Google Scholar

Nittler, L.R., and Ciesla, F. (2016) Astrophysics with extraterrestrial materials. Annual Review of Astronomy and Astrophysics, 54, 53–93.10.1146/annurev-astro-082214-122505Search in Google Scholar

Nutman, A.P., and Friend, C.R.L. (2007) Comment on “A vestige of Earth’s oldest ophiolite”. Science, 318, 746c –746c.10.1126/science.1144148Search in Google Scholar PubMed

O’Driscoll, B., and VanTongeren, J.A. (2017) Layered intrusions: From petrological paradigms to precious metal repositories. Elements, 13, 383–389.10.2138/gselements.13.6.383Search in Google Scholar

O’Neill, C., Lenardic, A., Moresi, L., Torsvik, T.H., and Lee, C.-T. (2007) Episodic Precambrian subduction. Earth and Planetary Science Letters, 262, 552–562.10.1016/j.epsl.2007.04.056Search in Google Scholar

O’Neil, J., Carlson, R.W., Francis, D., and Stevenson, R.K. (2008) Neodymium-142 evidence for Hadean mafic crust. Science, 321, 1828–1831.10.1126/science.1161925Search in Google Scholar PubMed

O’Reilly, S.Y., and Griffin, W.L. (2012) Mantle metasomatism. In: Harlov, D.E. and Austrheim, H. Eds., Metasomatism and the Chemical Transformation of Rock, pp. 471–533. Springer.10.1007/978-3-642-28394-9_12Search in Google Scholar

Palandri, J.L., and Reed, M.H. (2004) Geochemical models of metasomatism in ultramafic systems: Serpentinization, rodingitization, and sea floor carbonate chimney precipitation. Geochimica et Cosmochimica Acta, 68, 1115 –1133.10.1016/j.gca.2003.08.006Search in Google Scholar

Palin, R.M., and White, R.W. (2016) Emergence of blueschists on Earth linked to secular changes in oceanic crust composition. Nature Geoscience, 9, 60–64.10.1038/ngeo2605Search in Google Scholar

Papineau, D. (2010) Mineral environments on the earliest Earth. Elements, 6, 25–30.10.2113/gselements.6.1.25Search in Google Scholar

Paris, F., Bonnard, P., Ranger, J., and Lapeyrie, F. (1995) In vitro weathering of phlogopite by ectomycorrhizal fungi: I. Effect of K+ and Mg2+ deficiency on phyllosilicate evolution. Plant and Soil, 177, 191–201.10.1007/BF00010125Search in Google Scholar

Paris, F., Bottom, B., and Lapeyrie, F. (1996) In vitro weathering of phlogopite by ectomycorrhizal fungi: II. Effect of K+ and Mg2+ deficiency and N sources on accumulation of oxalate and H. Plant and Soil, 179, 141–150.10.1007/BF00011651Search in Google Scholar

Pasek, M.A., and Block, K. (2009) Lightning-induced reduction of phosphorus oxidation state. Nature Geoscience, 2, 553–556.10.1038/ngeo580Search in Google Scholar

Pasek, M.A., Block, K., and Pasek, V. (2012) Fulgurite morphology: A classification scheme and clues to formation. Contributions to Mineralogy and Petrology, 164, 477–492.10.1007/s00410-012-0753-5Search in Google Scholar

Passchier, C.W., and Trouw, R.A.J. (2005) Microtectonics, Second Edition. Springer.Search in Google Scholar

Patchett, J.P., Kuovo, O., Hedge, C.E., and Tatsumoto, M. (1982) Evolution of continental crust and mantle heterogeneity: Evidence from Hf isotopes. Contributions to Mineralogy and Petrology, 78, 279–297.10.1007/BF00398923Search in Google Scholar

Pekov, I.V., Kovrugin, V.M., Siidra, O.I., Chukanov, N.V., Belakovskiy, D.I., Koshlyakova, N.N., Yapaskurt, V.O., Turchkova, A.G., and Möhn, G. (2019) Antofagastaite, Na2Ca(SO4)2·1.5H2O, a new mineral related to syngenite. Mineralogical Magazine, 83, 781–790.10.1180/mgm.2019.17Search in Google Scholar

Perry, R.S., Mcloughlin, N., Lynne, B.Y., Sephton, M.A., Oliver, J.D., Perry, C.C., Campbell, K., Engel, M.H., Farmer, J.D., Brasier, M.D., and Staley, J.T. (2007) Defining biominerals and organominerals: Direct and indirect indicators of life. ScienceDirect, 201, 157–179.10.1016/j.sedgeo.2007.05.014Search in Google Scholar

Peters, T.A., Koestler, R.J., Peters, J.J., and Grube, C.H. (1983) Minerals of the Buckwheat dolomite, Franklin, New Jersey. Mineralogical Record, 14, 183–194.Search in Google Scholar

Philpotts, A.R., and Ague, J.J. (2009) Principles of Igneous and Metamorphic Petrology, Second Edition. Cambridge University Press.10.1017/CBO9780511813429Search in Google Scholar

Ping, H., Xie, H., Xiang, M., Su, B.-L., Wang, Y., Zhang, J., Zhang, F., and Fu, Z. (2016) Confined-space synthesis of nanostructured anatase, directed by genetically engineered living organisms for lithium-ion batteries. Chemical Science, 7, 6330–6336.10.1039/C6SC02311HSearch in Google Scholar

Piper, J.D.A. (2013) A planetary perspective on Earth evolution: Lid tectonics before plate tectonics. Tectonophysics, 589, 44–56.10.1016/j.tecto.2012.12.042Search in Google Scholar

Pirajno, F. (2009) Hydrothermal Processes and Mineral Systems. Springer.10.1007/978-1-4020-8613-7Search in Google Scholar

Plazo-Toledo, M. (2019) The mineral industry of Iceland. 2016 Minerals Yearbook, pp. 21.1–21.2. United States Geological Survey.Search in Google Scholar

Pósfai, M., Buseck, P.R., Bazylinski, D.A., and Frankel, R.B. (1998) Reaction sequence of iron sulfide minerals in bacteria and their use as biomarkers. Science, 280, 880–883.10.1126/science.280.5365.880Search in Google Scholar PubMed

Pósfai, M., Lefèvre, C.T., Trubitsyn, D., Bazylinski, D.A., and Frankel, R.B. (2013) Phylogenetic significance of composition and crystal morphology of magnetosome minerals. Frontiers in Microbiology, 4, 344.10.3389/fmicb.2013.00344Search in Google Scholar PubMed PubMed Central

Post, J.E. (1999) Manganese oxide minerals: Crystal structures and economic and environmental significance. Proceedings of the National Academy of Sciences U.S.A., 96, 3447–3454.10.1073/pnas.96.7.3447Search in Google Scholar PubMed PubMed Central

Prabhu, A., Morrison, S., Eleish, A., Zhong, H., Huang, F., Golden, J., Perry, S., Hummer, D., Runyon, S., Fontaine, K., Krivovichev, S., Downs, R., Hazen, R., and Fox, P. (2021) Global Earth mineral inventory: A data legacy. Geoscience Data Journal, 8, 74–89.10.1002/gdj3.106Search in Google Scholar PubMed PubMed Central

Prokoph, A., Ernst, R.E., and Buchan, K.L. (2004) Time-series analysis of Large Igneous Provinces: 3500 Ma to present. The Journal of Geology, 112, 1–22.10.1086/379689Search in Google Scholar

Reimink, J.R., Pearson, D.G., Shirey, S.B., Carlson, R.W., and Ketchum, J.W.F. (2019) Onset of new, progressive crustal growth in the central Slave craton at 3.5 Ga. Geochemical Perspectives Letters, 10, 7–12.Search in Google Scholar

Reith, F., Rogers, S.L., McPhail, D.C., and Webb, D. (2006) Biomineralization of gold: Biofilms on bacterioform gold. Science, 313, 233–236.10.1126/science.1125878Search in Google Scholar PubMed

Reith, F., Etschmann, B., Grosse, C., Moors, H., Benotmane, M.A., Monsieurs, P., Grass, G., Doonan, C., Vogt, S., Lai, B., Martinez-Craido, G., George, G.N., Nies, D.H., Mergeay, M., Pring, A., Southam, G., and Brugger, J. (2009) Mechanisms of gold biomineralization in the bacterium Cupriavidus metallidurans. Proceedings of the National Academy of Sciences, 106, 17757–17762.10.1073/pnas.0904583106Search in Google Scholar PubMed PubMed Central

Remy, W., Taylor, T.N., Hass, H., and Kerp, H. (1994) Four hundred-million-year old vesicular arbuscular mycorrhizae. Proceedings of the National Academy of Sciences, 91, 11841–11843.10.1073/pnas.91.25.11841Search in Google Scholar PubMed PubMed Central

Retallack, G.J. (2001) Soils of the Past: An Introduction to Paleopedology. Blackwell Science.10.1002/9780470698716Search in Google Scholar

Rodgers, A.L. (1997) Effect of mineral water containing calcium and magnesium on calcium oxalate urolithiasis risk factors. Urologia Internationalis, 58, 93–99.10.1159/000282958Search in Google Scholar PubMed

Rollinson, H. (2007a) When did plate tectonics begin? Geology Today, 23, 186–189.10.1111/j.1365-2451.2007.00631.xSearch in Google Scholar

Rollinson, H. (2007b) Early Earth Systems: A Geochemical Approach. Blackwell Publishing.Search in Google Scholar

Rosas, J.C., and Korenaga, J. (2018) Rapid crustal growth and efficient crustal recycling in the early Earth: Implications for Hadean and Archean geodynamics. Earth and Planetary Science Letters, 494, 42–49.10.1016/j.epsl.2018.04.051Search in Google Scholar

Rosas, J.C., and Korenaga, J. (2021) Archean seafloor shallowed with age due to radiogenic heating in the mantle. Nature Geoscience, 14, 51–56.10.1038/s41561-020-00673-1Search in Google Scholar

Rubin, A.E., and Ma, C. (2021) Meteorite Mineralogy. Cambridge University Press.10.1017/9781108613767Search in Google Scholar

Russell, S.A., Connolly, H.C. Jr., and Krot, A.N., Eds. (2018) Chondrules: Records of Protoplanetary Disk Processes. Cambridge University Press.10.1017/9781108284073Search in Google Scholar

Rye, R., and Holland, H.D. (1998) Paleosols and the evolution of atmospheric oxygen: A critical review. American Journal of Science, 298, 621–672.10.2475/ajs.298.8.621Search in Google Scholar

Sangster, D.F. (1972) Precambrian volcanogenic massive sulfide deposits in Canada: A review. Geological Survey of Canada Paper, 72-22, 1–43.Search in Google Scholar

Sanyal, S.K., and Shuster, J. (2021) Gold particle geomicrobiology: Using viable bacteria as a model for understanding microbe-mineral interactions. Mineralogical Magazine, 85, 117–124.10.1180/mgm.2021.19Search in Google Scholar

Savage, D., Cave, M.R., Milodowski, A.E., and George, I. (1987) Hydrothermal alteration of granite by meteoric fluid: an example from the Carnmenellis Granite, United Kingdom. Contributions to Mineralogy and Petrology, 96, 391–405.10.1007/BF00371257Search in Google Scholar

Saxby, J.D. (2000) Minerals in coal. In M. Gilkson and M. Mastalerez, Eds., Organic Matter and Mineralisation: Thermal Atleration, Hydrocarbon Generation and Role in Metallogenesis. Springer.10.1007/978-94-015-9474-5_15Search in Google Scholar

Schertl, H.-P., Mills, S.J., and Maresch, W.V. (2018) A Compendium of IMA-Approved Mineral Nomenclature. International Mineralogical Association.Search in Google Scholar

Schulz, H.N., and Schulz, H.D. (2005) Large sulfur bacteria and the formation of phosphorite. Science, 307, 416–419.10.1126/science.1103096Search in Google Scholar

Schwartzenbach, E.M., and Steele-MacInnis, M. (2020) Fluids in submarine mid-ocean ridge hydrothermal settings. Elements, 16, 389–394.10.2138/gselements.16.6.389Search in Google Scholar

Schwartzman, D.W., and Volk, T. (1989) Biotic enhancement of weathering and the habitability of Earth. Nature, 340, 457–460.10.1038/340457a0Search in Google Scholar

Schweinfurth, S.P. (2016) Coal—A Complex Natural Resource. U.S. Geological Survey Circular, 40, 1143 p.Search in Google Scholar

Sherman, G.D., Walker, J.L., and Ikawa, H. (1968) Some of the Mineral Resources of the Hawaiian Islands. Hawaii Agricultural Experiment Station Bulletin No. 138, University of Hawaii, 35 p.Search in Google Scholar

Shirey, S.B., and Richardson, S.H. (2011) Start of the Wilson Cycle at 3 Ga shown by diamonds from subcontinental mantle. Science, 333, 434–436.10.1126/science.1206275Search in Google Scholar

Shirey, S.B., Kamber, B.S., Whitehouse, M.J., Mueller, P.A., and Basu, A.R. (2008) A review of the isotopic and trace element evidence for mantle and crustal processes in the Hadean and Archean: Implications for the onset of plate tectonic subduction. In K. Condie and V. Pease, Eds., When Did Plate Tectonics Begin on Earth? Geological Society of America Special Paper, 3440, 1–29.10.1130/2008.2440(01)Search in Google Scholar

Shrenk, M.O., Brazelton, W.J., and Lang, S.Q. (2013) Serpentinization, carbon, and deep life. Reviews in Mineralogy and Geochemistry, 75, 575–606.10.2138/rmg.2013.75.18Search in Google Scholar

Smith, G.F.H., and Prior, G.T. (1899) On some lead minerals from Laurium, namely, laurionite, phosgenite, fiedlerite, and (new species) paralaurionite. Mineralogical Magazine and Journal of the Mineralogical Society, 12, 102–110.10.1180/minmag.1899.012.55.06Search in Google Scholar

Sokol, E.V., Novikov, I.S., Zateeva, S.N., Sharygin, V.V., and Vapnik, Y. (2008) Pyrometamorphic rocks of the spurrite-merwinite facies as indicators of hydrocarbon discharge zones (the Hatrurim formation, Israel). Doklady Earth Sciences, 420, 608–614.10.1134/S1028334X08040181Search in Google Scholar

Sokol, E.V., Kokh, S.N., Sharygin, V.V., Danilovsky, V.A., Seryotkin, Y.V., Liferovich, R., Deviatiiarova, A.S., Nigmatulina, E.N., and Karmanov, N.S. (2019) Mineralogical diversity of Ca2SiO4-bearing combustion metamorphic rocks in the Hatrurim Basin: Implications for storage and partitioning of elements in oil shale clinkering. Minerals, 9, 465.10.3390/min9080465Search in Google Scholar

Southam, G., and Saunders, J.A. (2005) The geomicrobiology of ore deposits. Economic Geology, 100, 1067–1084.10.2113/gsecongeo.100.6.1067Search in Google Scholar

Spry, P.G., Plimer, I.R., and Teale, G.S. (2008) Did the giant Broken Hill (Australia) Zn-Pb-Ag deposit melt? Ore Geology Reviews, 34, 223–241.10.1016/j.oregeorev.2007.11.001Search in Google Scholar

Steele-MacInnis, M., and Manning, C.E. (2020) Hydrothermal properties of geologic fluids. Elements, 16, 375–380.10.2138/gselements.16.6.375Search in Google Scholar

Stern, R.J. (2005) Evidence from ophiolites, blueschists, and ultrahigh-pressure metamorphic terranes that the modern episode of subduction tectonics began in Neoproterozoic time. Geology, 33, 557–560.10.1130/G21365.1Search in Google Scholar

Stern, R.J. (2018) The evolution of plate tectonics. Philosophical Transactions of the Royal Society, A376, 20170406.10.1098/rsta.2017.0406Search in Google Scholar

Stracher, G.B., Prakash, A., and Sokol, E.V., Eds. (2015) Coal and Peat Fires, vol. 3, 786 p. Elsevier.Search in Google Scholar

Streckeisen, A.L. (1976) To each plutonic rock its proper name. Earth-Science Reviews, 12, 1–33.10.1016/0012-8252(76)90052-0Search in Google Scholar

Streckeisen, A.L. (1979) Classification and nomenclature of volcanic rocks, lamprophyres, carbonatites, and melilitic rocks: Recommendations and suggestions of the IUGS Subcommission on the Systematics of Igneous Rocks. Geology, 7, 331–335.10.1130/0091-7613(1979)7<331:CANOVR>2.0.CO;2Search in Google Scholar

Sueoka, Y., and Sakakibara, M. (2013) Primary phases and natural weathering of smelting slag at an abandoned mine site in southwest. Minerals, 3, 412–426.10.3390/min3040412Search in Google Scholar

Sugitani, K., Mimura, K., Suzuki, K., Nagamine, K., and Sugisaki, R. (2003) Stratigraphy and sedimentary petrology of an Archean volcanic /sedimentary succession at Mt. Goldsworthy in the Pilbara Block, Western Australia: Implications of evaporite (nahcolite) and barite deposition. Precambrian Research, 120, 55–79.10.1016/S0301-9268(02)00145-6Search in Google Scholar

Suzuki, Y., and Banfield, J.F. (1999) Geomicrobiology of uranium. Reviews in Mineralogy, 38, 393–432.10.1515/9781501509193-013Search in Google Scholar

Sverjensky, D.A., and Lee, N. (2010) The Great Oxidation Event and mineral diversification. Elements, 6, 31–36.10.2113/gselements.6.1.31Search in Google Scholar

Tang, M., Chen, K., and Rudnick, R.L. (2016) Archean upper crust transition from mafic to felsic marks the onset of plate tectonics. Science, 351, 372–375.10.1126/science.aad5513Search in Google Scholar

Tang, M., Chu, X., Hao, J., and Shen, B. (2021) Orogenic quiescence in Earth’s middle age. Science, 371, 728–731.10.7185/gold2021.4320Search in Google Scholar

Taylor, S.R., and McLennan, S.M. (1995) The geochemical evolution of the continental crust. Reviews of Geophysics, 33, 241–265.10.1029/95RG00262Search in Google Scholar

Thiemens, M.M., Sprung, P., Fonseca, R.O.C., Leitzke, F.P., and Munker, C. (2019) Early Moon formation inferred from hafnium-tungsten systematics. Nature Geoscience, 12, 696–700.10.1038/s41561-019-0398-3Search in Google Scholar

Titley, S.R. (1993) Relationship of stratabound ores with tectonic cycles of the Phanerozoic and Proterozoic. Precambrian Research, 61, 295–322.10.1016/0301-9268(93)90118-LSearch in Google Scholar

Tkachev, A.V. (2011) Evolution of metallogeny and granite pegmatites associated with orogens throughout geological time. In A.N. Saal, J.S. Bettencourt, C.P. De Campos, and V.P. Ferreira, Eds., Granite-Related Ore Deposits. Geological Society of London, Special Publications, 350, 7–23.10.1144/SP350.2Search in Google Scholar

Tomioka, N., and Miyahara, M. (2017) High-pressure minerals in shocked meteorites. Meteoritics & Planetary Science, 52, 2017–2039.10.1111/maps.12902Search in Google Scholar

Trouw, R.A.J., Passchier, C.W., and Wiersma, D.J. (2009) Atlas of Mylonites and Related Microstructures. Springer.10.1007/978-3-642-03608-8Search in Google Scholar

Tschauner, O. (2019) High-pressure minerals. American Mineralogist, 104, 1701–1731.10.2138/am-2019-6594Search in Google Scholar

Turner, S., Wilde, S., Wörner, G., Schaefer, B., and Lai, Y.-J. (2020) An andesitic source for Jack Hills zircon supports onset of plate tectonics in the Hadean. Nature Communications, 11, 1241.10.1038/s41467-020-14857-1Search in Google Scholar PubMed PubMed Central

Uebe, R., and Schüler, D. (2016) Magnetosome biogenesis in magnetotactic bacteria. Nature Reviews. Microbiology, 14, 621–637.10.1038/nrmicro.2016.99Search in Google Scholar PubMed

Ueshima, M., and Tazaki, K. (1998) Bacterial bio-weathering of K-feldspar and biotite in granite. Clay Science Japan, 38, 68–92.Search in Google Scholar

van Hunen, J., and Moyen, J.-F. (2012) Archean subduction: fact or fiction? Annual Review of Earth and Planetary Sciences, 40, 195–219.10.1146/annurev-earth-042711-105255Search in Google Scholar

Van Kranendonk, M.J., Webb, G.E., and Kamber, B.S. (2003) Geological and trace element evidence for a marine sedimentary environment of deposition and biogenicity of 3.45 Ga stromatolitic carbonates in the Pilbara Craton, and support for a reducing Archean Ocean. Geobiology, 1, 91–108.10.1046/j.1472-4669.2003.00014.xSearch in Google Scholar

Van Kranendonk, M.J., Collins, W.J., Hickman, A., and Pawley, M.J. (2004) Critical tests of vertical vs. horizontal tectonic models for the Archaean East Pilbara Granite-Greenstone Terrane, Pilbara Craton, Western Australia. Precambrian Research, 131, 173–211.10.1016/j.precamres.2003.12.015Search in Google Scholar

Van Kranendonk, M.J., Smithies, R.H., Hickman, A.H., and Champion, D. (2007a) Review: Secular tectonic evolution of Archean continental crust: Interplay between horizontal and vertical processes in the formation of the Pilbara Craton, Australia. Terra Nova, 19, 1–38.10.1111/j.1365-3121.2006.00723.xSearch in Google Scholar

Van Kranendonk, M.J., Smithies, R.H., and Bennett, V.C., Eds. (2007b) Earth’s Oldest Rocks. Developments in Precambrian Geology, 15. Elsevier.Search in Google Scholar

Van Tassel, R. (1945) Une efflorescence d’acétatochlorure de calcium sur des roches calcaires dans des collections. Bulletin du Musée Royal D’Histoire Naturelle de Belgique, 21, 1–11.Search in Google Scholar

Vergasova, L.P., and Filatov, S.K. (2016) A study of volcanogenic exhalation mineralization. Journal of Volcanology and Seismology, 10, 71–85.10.1134/S0742046316020068Search in Google Scholar

Vernon, R.H. (2008) Principles of Metamorphic Petrology. Cambridge University Press.Search in Google Scholar

Voosen, P. (2021) Ancient Earth was a water world. Science, 371, 1088–1089.10.1126/science.371.6534.1088Search in Google Scholar PubMed

Walenta, K., and Dunn, P.J. (1984) Arsenogoyazit, ein neues mineral der Crandallitgruppe aus dem Schwarzwald. Schweizerische Mineralogische Und Petrographische Mitteilungen, 64, 11–19.Search in Google Scholar

Wegorzewski, A.V., and Kuhn, T. (2014) The influence of suboxic diagenesis on the formation of manganese nodules in the Clarion Clipperton nodule belt of the Pacific Ocean. Marine Geology, 357, 123–138.10.1016/j.margeo.2014.07.004Search in Google Scholar

Weiner, S., and Wagner, H.D. (1998) The material bone: structure-mechanical function relations. Annual Review of Materials Science, 28, 271–298.10.1146/annurev.matsci.28.1.271Search in Google Scholar

Wenk, H.-R., and Bulakh, A. (2016) Minerals: Their Constitution and Origin, 2nd ed. Cambridge University Press.10.1017/9781316226889Search in Google Scholar

Whittet, D.C.B. (2003) Dust in the Galactic Environment. Institute of Physics Publishing.Search in Google Scholar

Wilde, S.A., Valley, J.W., Peck, W.H., and Graham, C.M. (2001) Evidence from detrital zircons for the existence of continental crust and oceans on Earth 4.4 Gyr ago. Nature, 409, 175–178.10.1038/35051550Search in Google Scholar PubMed

Wilson, M.J. (2013) Rock-Forming Minerals. Vol. 3C, Second Edition. Sheet Silicates: Clay Minerals. Wiley.Search in Google Scholar

Wilson, M.J., and Bain, D.C. (1986) Spheniscidite, a new phosphate mineral from Elephant Island. Mineralogical Magazine, 50, 291–293.10.1180/minmag.1986.050.356.14Search in Google Scholar

Woolley, A.R., and Kjarsgaard, B.A. (2008) Carbonatite occurrences of the world: Map and database. Geological Survey of Canada Open File, 5796.10.4095/225115Search in Google Scholar

Wufuer, R., Wei, Y., Lin, Q., Wang, H., Song, W., Liu, W., Zhang, D., Pan, X., and Gadd, G.M. (2017) Uranium bioreduction and biomineralization. Advances in Applied Microbiology, 101, 137–168.10.1016/bs.aambs.2017.01.003Search in Google Scholar PubMed

Yang, H., Sun, H.J., and Downs, R. T. (2011) Hazenite, KNaMg2(PO4)2·14H2O, a new biologically related phosphate mineral, from Mono Lake, California, U. S. American Mineralogist, 96, 675–681.10.2138/am.2011.3668Search in Google Scholar

Yoder, H.S. Jr. (2002) Geology: Significant component of new multidisciplinary sciences. Proceedings of the American Philosophical Society, 146, 37–55.Search in Google Scholar

Zahnle, K.J. (2006) Earth’s earliest atmosphere. Elements, 2, 217–222.10.2113/gselements.2.4.217Search in Google Scholar

Zahnle, K.J., Arndt, N., Cockell, C., Halliday, A., Nisbet, E., Selsis, F., and Sleep, N.H. (2007) Emergence of a habitable planet. Space Science Reviews, 129, 35–78.10.1007/978-0-387-74288-5_3Search in Google Scholar

Zaikowski, L., and Friedrich, J.M., Eds. (2007) Chemical Evolution I: Chemical Change across Space and Time. American Chemical Society Symposium, 981.Search in Google Scholar

Zeng, Z., Ali, S.H., and Tian, J., and Li, J. (2020) Mapping anthropogenic mineral generation in China and its implications for a circular economy. Nature Communications, 11, 1554.10.1038/s41467-020-15246-4Search in Google Scholar PubMed PubMed Central

Zerfaß, C., Christie-Oleza, J.A., and Sover, O.S. (2019) Manganese oxide biomineralization provides protection against nitrate toxicity in a cell-density-dependent manner. Applied Environmental Microbiology, 85, e02129-18.Search in Google Scholar

Zhai, M., Zhao, G., and Zhang, Q. (2002) Is the Dongwanzi Complex an Archean ophiolite? Science, 295, 923.10.1126/science.295.5557.923aSearch in Google Scholar PubMed

Zheng, Y.-F., and Chen, R.-X. (2017) Regional metamorphism at extreme conditions: Implications for orogeny at convergent plate margins. Journal of Asian Earth Sciences, 145, 46–73.10.1016/j.jseaes.2017.03.009Search in Google Scholar

Zientek, M.L. (2012) Magmatic ore deposits in layered intrusions—Descriptive model for reef-type PGE and contact-type Cu-Ni-PGE deposits. United States Geological Survey. Open-File Report, 2012-1010.10.3133/ofr20121010Search in Google Scholar

Zinner, E.K. (2014) Presolar grains. In A.M. Davis, H.D. Holland, and K.K. Turekian, Eds., Treatise on Geochemistry, vol. 1. Meteorites, Comets, and Planets, 2nd ed., p. 17–39. Elsevier-Pergamon.Search in Google Scholar

Received: 2021-04-15
Accepted: 2021-06-30
Published Online: 2022-07-02
Published in Print: 2022-07-26

© 2022 Mineralogical Society of America

Downloaded on 3.12.2023 from https://www.degruyter.com/document/doi/10.2138/am-2022-8099/html
Scroll to top button