Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access September 1, 2003

An essay on model theory

Ludomir Newelski
From the journal Open Mathematics

Abstract

Some basic ideas of model theory are presented and a personal outlook on its perspectives is given.

Keywords: 03-02

[1] [Ba] J.T. Baldwin: Fundamentals of Stability Theory, Springer, Berlin, 1988. 10.1007/978-3-662-07330-8Search in Google Scholar

[2] [Bu] S. Buechler: “Vaught conjecture for superstable theories of finite rank”, (1993), preprint. Search in Google Scholar

[3] [CS] G. Cherlin and S. Shelah: “Superstable fields and groups”, Ann. Math. Logic, Vol. 18, (1980), pp. 227–270. http://dx.doi.org/10.1016/0003-4843(80)90006-610.1016/0003-4843(80)90006-6Search in Google Scholar

[4] [CR] H.H. Crapo and G.C. Pota: On the foundations of combinatorial theory: combinatorial geometries, MIT Press, Cambridge (Mass.), 1970. 10.1002/sapm1970492109Search in Google Scholar

[5] [D] L. van den Dries: Tame topology and o-minimal structures, London Math. Soc. Lecture Notes Series 248, Cambridge Univ. Press, Cambridge, 1998. Search in Google Scholar

[6] [Ho] W. Hodges: Model theory, Cambridge Univ. Press, Cambridge, 1993. Search in Google Scholar

[7] [H1] E. Hrushovski: Contributions to model theory, Ph.D. thesis, Univ. of California at Berkeley, Berkeley, 1996. Search in Google Scholar

[8] [H2] E. Hrushovski: “A new strongly minimal set”, Ann. Pure Appl. Logic, Vol. 50, (1990), pp. 117–138. http://dx.doi.org/10.1016/0168-0072(90)90046-510.1016/0168-0072(90)90046-5Search in Google Scholar

[9] [CK] C.C. Chang and H.J. Keisler: Model Theory, 3rd Ed., North Holland, Amsterdam, 1990. Search in Google Scholar

[10] [L] D. Lascar: “Why some people are excited by Vaught’s conjecture”, J. Symb. Logic, Vol. 50, (1985), pp. 973–982. http://dx.doi.org/10.2307/227398410.2307/2273984Search in Google Scholar

[11] [Mc] A. Macintyre: “On N 1-categorical theories of fields”, Fund. Math., Vol. 71, (1971), pp. 1–25. Search in Google Scholar

[12] [Ma] D. Marker: Model theory. An introduction, Grad. Texts in Math., Springer, New York, 2002. Search in Google Scholar

[13] [Mo] M. Morley: “Categoricity in power”, Trans. AMS, Vol. 114, (1964), pp. 514–538. http://dx.doi.org/10.2307/199418810.2307/1994188Search in Google Scholar

[14] [NPi] A. Nesin and A. Pillay: “Some model theory of compact Lie groups”, Trans. AMS, Vol. 326, (1991), pp. 453–463. http://dx.doi.org/10.2307/200187310.2307/2001873Search in Google Scholar

[15] [Ne1] L. Newelski: “A proof of Saffe’s conjecture”, Fund. Math., Vol. 134, (1990), pp. 143–155. Search in Google Scholar

[16] [Ne2] L. Newelski: “Meager forking and m-independence”, Proc. Int. Congress of Math., Berlin, 1998, Doc. Math., Extra Vol. II, (1998), pp. 33–42. Search in Google Scholar

[17] [Ne3] L. Newelski: “m-normal theories”, Fund. Math., Vol. 170, (2001), pp. 141–163. http://dx.doi.org/10.4064/fm170-1-910.4064/fm170-1-9Search in Google Scholar

[18] [Ne4] L. Newelski: “Small profinite groups”, J. Symb. Logic, Vol. 66, (2001), pp. 859–872. http://dx.doi.org/10.2307/269504910.2307/2695049Search in Google Scholar

[19] [Ne5] L. Newelski: “Small profinite structures”, Trans. AMS, Vol. 354, (2002), pp. 925–943. http://dx.doi.org/10.1090/S0002-9947-01-02854-910.1090/S0002-9947-01-02854-9Search in Google Scholar

[20] [Ne6] L. Newelski: “The diameter of a Lascar strong type”, Fund. Math., Vol. 176, (2003), pp. 157–170. Search in Google Scholar

[21] [NPe] L. Newelski and M. Petrykowski: Coverings of groups and types, manuscript, 2003. Search in Google Scholar

[22] [Pi1] A. Pillay: Geometric Model Theory, Clarendon Press, Oxford, 1996. Search in Google Scholar

[23] [Pi2] A. Pillay: “Some model theory of compact complex spaces”, In: Hilbert’s tenth problem: relations with arithmetic and algebraic geometry. Ghent, 1999, Contemp. Math., Vol. 270, pp. 323–338. 10.1090/conm/270/04380Search in Google Scholar

[24] [Pi3] A. Pillay: “Model-theoretic consequences of a theorem of Campana and Fujiki”, Fund. Math., Vol. 174, (2002), pp. 187–192. Search in Google Scholar

[25] [Po] B. Poizat: Groupes stables, Nur Al-Mantiq Wal-Ma’rifah, Villeurbane, France, 1985. Search in Google Scholar

[26] [Sa] G. Sacks: Saturated Model Theory, Benjamin, Reading, 1972. Search in Google Scholar

[27] [Sc] T. Scanlon: “The abc theorem for commutative algebraic groups in characteristic p”, Int. Math. Res. Notices, No. 18, (1997), pp. 881–898. http://dx.doi.org/10.1155/S107379289700057310.1155/S1073792897000573Search in Google Scholar

[28] [Sh] S. Shelah: Classification Theory and the number of non-isomorphic models, 2nd Ed., North Holland, Amsterdam, 1990. Search in Google Scholar

[29] [SHM] S. Shelah, L. Harrington, M. Makkai: “A proof of Vaught’s conjecture for ω-stable theories”, Israel J. Math., Vol. 49, (1984), pp. 181–238. Search in Google Scholar

[30] [Wa] F.O. Wagner: Simple Theories, Kluwer, Dodrecht, 2000. 10.1007/978-94-017-3002-0Search in Google Scholar

Published Online: 2003-9-1
Published in Print: 2003-9-1

© 2003 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow