Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access December 1, 2005

Electron-nuclear entanglement in the cold lithium gases

Guo-Qiang Zhu, Jun-Wen Mao and You-Quan Li
From the journal Open Physics

Abstract

We study the ground-state entanglement and thermal entanglement in the hyperfine interaction of the lithium atom. We present the relationship between the entanglement and both temperature and external magnetic fields.

Keywords: 03.65.Ud; 03.75.Gg

[1] M.A. Nielsen and I.L. Chuang:Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, England, 2000. Search in Google Scholar

[2] M.C. Arnesen, S. Bose and V. Vedral: “Natural Thermal and Magnetic Entanglement in the 1D Heisenberg Model”, Phys. Rev. Lett., Vol. 87, (2001), pp. 017901. http://dx.doi.org/10.1103/PhysRevLett.87.01790110.1103/PhysRevLett.87.017901Search in Google Scholar PubMed

[3] X. Wang: “Thermal and ground-state entanglement in Heisenberg XX qubit rings”, Phys. Rev. A, Vol. 66, (2002), pp. 034302. http://dx.doi.org/10.1103/PhysRevA.66.03430210.1103/PhysRevA.66.034302Search in Google Scholar

[4] Y. Sun, Y.Q. Chen and H. Chen: “Thermal entanglement in the two-qubit Heisenberg XY model under a nonuniform external magnetic field”, Phys. Rev. A, Vol. 68, (2003), pp. 044301. http://dx.doi.org/10.1103/PhysRevA.68.04430110.1103/PhysRevA.68.044301Search in Google Scholar

[5] X.-Q. Xi, S.-R. Hao, W.-X. Chen and R.-H. Yue: “Entanglement of Two-Qubit Quantum Heisenberg XYZ Chain”, Chin. Phys. Lett., Vol. 19, (2002), pp. 1044–1047. http://dx.doi.org/10.1088/0256-307X/19/8/30510.1088/0256-307X/19/8/305Search in Google Scholar

[6] A. Osterloh, L. Amico, G. Falci and R. Fazio: “Scaling of entanglement close to a quantum phase transition”, Nature, Vol. 416, 2002, pp. 608–610. http://dx.doi.org/10.1038/416608a10.1038/416608aSearch in Google Scholar PubMed

[7] T.J. Osborne and M Nielsen: “Entanglement in a simple quantum phase transition”, Phys. Rev. A, Vol. 66, (2002), pp. 032110. http://dx.doi.org/10.1103/PhysRevA.66.03211010.1103/PhysRevA.66.032110Search in Google Scholar

[8] S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C. Chin, J. Hecker Denschlag and R. Grimm: “Bose-Einstein Condensation of Molecules”, Science, Vol. 302, (2003), pp. 2101–2103. http://dx.doi.org/10.1126/science.109328010.1126/science.1093280Search in Google Scholar PubMed

[9] C.A. Regal, C. Ticknor, J.L. Bohn and D.S. Jin: “Creation of ultracold molecules from a Fermi gas of atoms”, Nature, Vol. 424, (2003), pp. 47–50. http://dx.doi.org/10.1038/nature0173810.1038/nature01738Search in Google Scholar PubMed

[10] C.J. Pethick and H. Smith:Bose-Einstein Condensation in Dilute Gases, Cambridge Press, Cambridge, 2002. 10.1017/CBO9780511755583Search in Google Scholar

[11] P. Rungta, V. Buzek, C.M. Caves, M. Hillery, G.J. Milburn and W.K. Wootters: “Universal state inversion and concurrence in arbitrary dimensions”, Phys. Rev. A, Vol. 64, (2001), pp. 042315. http://dx.doi.org/10.1103/PhysRevA.64.04231510.1103/PhysRevA.64.042315Search in Google Scholar

[12] G. Vidal and R.F. Werner: “Computable measure of entanglement”, Phys. Rev. A, Vol. 65, (2002), pp. 032314. http://dx.doi.org/10.1103/PhysRevA.65.03231410.1103/PhysRevA.65.032314Search in Google Scholar

[13] M. Horodecki, P. Horodecki and R. Horodecki: “Separability of mixed states: necessary and sufficient conditions”, Phys. Lett. A, Vol. 223, (1996), pp. 1–8. http://dx.doi.org/10.1016/S0375-9601(96)00706-210.1016/S0375-9601(96)00706-2Search in Google Scholar

Published Online: 2005-12-1
Published in Print: 2005-12-1

© 2005 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow