Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access December 1, 2005

Modeling transport through single-molecule junctions

Kamil Walczak and Sergey Edward Lyshevski
From the journal Open Physics

Abstract

Non-equilibrium Green's functions (NEGF) formalism combined with extended Hückel (EHT) and charging model are used to study electrical conduction through single-molecule junctions. The analyzed molecular complex is composed of the asymmetric 1,4-Bis((2′-para-mercaptophenyl)-ethinyl)-2-acetyl-amino-5-nitrobenzene molecule symmetrically coupled to two gold electrodes. Owing to this model, the accurate values of the current flowing through such junctions can be obtained by utilizing basic fundamentals and coherently deriving model parameters. Furthermore, the influence of the charging effect on the transport characteristics is emphasized. In particular, charging-induced reduction of conductance gap, charging-induced rectification effect and charging-generated negative value of the second derivative of the current with respect to voltage are observed and examined for the molecular complex.

Keywords: 73.23.-b; 85.65.+h

[1] W. Tian, S. Datta, S. Hong, R. Reifenberger, J. I. Henderson and C. P. Kubiak: “Conductance spectra of molecular wires”, J. Chem. Phys., Vol. 109(7), (1998), pp. 2874–2882 http://dx.doi.org/10.1063/1.47684110.1063/1.476841Search in Google Scholar

[2] M.A. Reed, C. Zhou, M.R. Deshpande, C.J. Muller, T.P. Burgin, L. Jones II and J.M. Tour: “The electrical measurement of molecular junctions”, Ann. N.Y. Acad. Sci., Vol. 852, (1998), pp. 133–144. http://dx.doi.org/10.1111/j.1749-6632.1998.tb09868.x10.1111/j.1749-6632.1998.tb09868.xSearch in Google Scholar

[3] C. Kergueris, J.-P. Bourgoin, D. Esteve, C. Urbina, M. Magoga and C. Joachim: “Electron transport through a metal-molecule-metal junction”, Phys. Rev. B, Vol. 59(19), (1999), pp. 12505–12513. http://dx.doi.org/10.1103/PhysRevB.59.1250510.1103/PhysRevB.59.12505Search in Google Scholar

[4] J. Reichert, R. Ochs, D. Beckmann, H.B. Weber, M. Mayor and H.V. Löhneysen: “Driving current through single organic molecules”, Phys. Rev. Lett., Vol. 88(17), (2002), pp. 176804. http://dx.doi.org/10.1103/PhysRevLett.88.17680410.1103/PhysRevLett.88.176804Search in Google Scholar

[5] B. Xu and N.J. Tao: “Measurement of single-moleculer resistance by repeated formation of molecular junctions”, Science, Vol. 301, (2003), pp. 1221–1223. http://dx.doi.org/10.1126/science.108748110.1126/science.1087481Search in Google Scholar

[6] Y. Wada: “A prospect for single molecule information processing devices”, Pure Appl. Chem., Vol. 71(11), (1999), pp. 2055–2066. Search in Google Scholar

[7] C. Joachim, J.K. Gimzewski and A. Aviram: “Electronics using hybrid-molecular and mono-molecular devices”, Nature, Vol. 408, (2000), pp. 541–548. http://dx.doi.org/10.1038/3504600010.1038/35046000Search in Google Scholar

[8] A. Nitzan and M.A. Ratner: “Electron transport in molecular wire junctions”, Science, Vol. 300, (2003), pp. 1384–1389. http://dx.doi.org/10.1126/science.108157210.1126/science.1081572Search in Google Scholar

[9] J.R. Heath and M.A. Ratner: “Molecular electronics”, Phys. Today, Vol. 56(5), (2003), pp. 43–49. Search in Google Scholar

[10] A. H. Flood, J.F. Stoddart, D.W. Steuerman and J.R. Health: “Whence molecular electronics?”Science, Vol. 306, (2004), pp. 2055–2056. http://dx.doi.org/10.1126/science.110619510.1126/science.1106195Search in Google Scholar

[11] S.E. Lyshevski:Nano- and MicroElectromechanical Systems: Fundamentals of Nano-and MicroEngineering, CRC Press, Boca Raton, FL, 2005. Search in Google Scholar

[12] S.T. Pantelides, M. Di Ventra and N.D. Lang: “Molecular electronics by the numbers”, Physica B, Vol. 296, (2001), pp. 72–77. http://dx.doi.org/10.1016/S0921-4526(00)00782-110.1016/S0921-4526(00)00782-1Search in Google Scholar

[13] E.G. Emberly and G. Kirczenow: “Theoretical study of electrical conduction through a molecule connected to metallic nanocontacts”, Phys. Rev. B, Vol. 58(16), (1998), pp. 10911–10920. http://dx.doi.org/10.1103/PhysRevB.58.1091110.1103/PhysRevB.58.10911Search in Google Scholar

[14] L.E. Hall, J.R. Reimers, N.S. Hush and K. Silvebrook: “Formalism, analytical model, and a priori Green's-function-based calculations of the current-voltage characteristics of molecular wires”, J. Chem. Phys., Vol. 112(3), (2000), pp. 1510–1521. http://dx.doi.org/10.1063/1.48069610.1063/1.480696Search in Google Scholar

[15] A. Onipko, Y. Klymenko and L. Malysheva: “Conductance of molecular wires: analytical modeling of connection to leads”, Phys. Rev. B Vol. 62(15), (2000), pp. 10480–10493. http://dx.doi.org/10.1103/PhysRevB.62.1048010.1103/PhysRevB.62.10480Search in Google Scholar

[16] S.N. Yaliraki, A.E. Roitberg, C. Gonzalez, V. Mujica and M.A. Ratner: “The injecting energy at molecule/metal interfaces: implications for conductance of molecular junctions from an ab initio molecular description”, J. Chem. Phys. Vol. 111(15), (1999), pp. 6997–7002. http://dx.doi.org/10.1063/1.48009610.1063/1.480096Search in Google Scholar

[17] J.M. Seminario, A.G. Zacarias and J.M. Tour: “Theoretical study of a molecular resonant diode”, J. Am. Chem. Soc., Vol. 122, (2000), pp. 3015–3020. http://dx.doi.org/10.1021/ja992936h10.1021/ja992936hSearch in Google Scholar

[18] P.S. Damle, A.W. Ghosh and S. Datta: “Unified description of molecular conduction: from molecules to metallic wires”, Phys. Rev. B, Vol. 64, (2001), pp. 201–403. http://dx.doi.org/10.1103/PhysRevB.64.20140310.1103/PhysRevB.64.201403Search in Google Scholar

[19] Y. Xue, S. Datta and M.A. Ratner: “First-principles based matrix Green's function approach to molecular electronic devices: general formalism”, Chem. Phys., Vol. 281, (2002), pp. 151–170. http://dx.doi.org/10.1016/S0301-0104(02)00446-910.1016/S0301-0104(02)00446-9Search in Google Scholar

[20] J. Taylor, M. Brandbyge and K. Stokbro: “Theory of rectification of Tour wires: the role of electrode coupling”, Phys. Rev. Lett., Vol. 89(13), (2002), pp. 138301. http://dx.doi.org/10.1103/PhysRevLett.89.13830110.1103/PhysRevLett.89.138301Search in Google Scholar PubMed

[21] J. Heurich, J.C. Cuevas, W. Wenzel and G. Schön: “Electrical transport through single-molecule junctions: from molecular orbitals to conduction channels”, Phys. Rev. Lett., Vol. 88(25), (2002), pp. 256803. http://dx.doi.org/10.1103/PhysRevLett.88.25680310.1103/PhysRevLett.88.256803Search in Google Scholar PubMed

[22] A.-P. Jauho, N.S. Wingreen and Y. Meir: “Time-dependent transport in interacting and noninteracting resonant-tunneling systems”, Phys. Rev. B, Vol. 50, (1994), pp. 5528–5544. http://dx.doi.org/10.1103/PhysRevB.50.552810.1103/PhysRevB.50.5528Search in Google Scholar PubMed

[23] F. Zahid, M. Paulsson and S. Datta: “Electrical Conduction through Molecules”, In: H. Morkoc (Ed.):Advanced Semiconductors and Organic Nano-Techniques, Academic Press, 2003. Search in Google Scholar

[24] HyperChem 5.1 Pro for Windows, Hypercube Irc., 1997. Search in Google Scholar

[25] A. Ulman: “Formation and structure of self-assembled monolayers”, Chem. Rev., Vol. 96(4), (1996), pp. 1533–1554. http://dx.doi.org/10.1021/cr950235710.1021/cr9502357Search in Google Scholar PubMed

[26] K. Walczak: “The role of quantum interference in determining transport properties of molecular bridges”, Cent. Eur. J. Chem., Vol. 2(3), (2004), pp. 524–533. http://dx.doi.org/10.2478/BF0247620510.2478/BF02476205Search in Google Scholar

[27] G.C. Liang, A.W. Ghosh, M. Paulsson and S. Datta: “Electrostatic potential profiles of molecular conductors”, Phys. Rev. B, Vol. 69(11), (2004), pp. 115302. http://dx.doi.org/10.1103/PhysRevB.69.11530210.1103/PhysRevB.69.115302Search in Google Scholar

[28] K. Walczak: “Charging effects in biased molecular devices”, Physica E, Vol. 25(4), (2005), pp. 530–534. http://dx.doi.org/10.1016/j.physe.2004.08.10210.1016/j.physe.2004.08.102Search in Google Scholar

[29] M. Di Ventra, S.T. Pantelides and N.D. Lang: “Current-induced forces in molecular wires”, Phys. Rev. Lett., Vol. 88(4), (2002), pp. 046801. http://dx.doi.org/10.1103/PhysRevLett.88.04680110.1103/PhysRevLett.88.046801Search in Google Scholar PubMed

Published Online: 2005-12-1
Published in Print: 2005-12-1

© 2005 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow