Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access March 1, 2004

Determination of inorganic arsenic species As(III) and As(V) by high performance liquid chromatography with hydride generation atomic absorption spectrometry detection

P. Niedzielski, M. Siepak and K. Novotny
From the journal Open Chemistry

Abstract

The paper presents the principles and advantages of a technique combining high performance liquid chromatography and hydride generation atomic absorption spectrometry (HPLC-HGAAS) applied to speciation analysis of inorganic species of arsenic As(III) and As(V) in ground water samples. With separation of the arsenic species on an ion-exchange column in the chromatographic system and their detection by the hydride generation atomic absorption spectrometry, the separation of the analytical signals of the arsenic species was excellent at the limits of determination of 1.5 ng/ml As(III) and 2.2 ng/ml As(V) and RSD of 4.3% and 7.8% for the concentration of 25 ng/ml. The hyphenated technique has been applied for determination of arsenic in polluted ground water in the course of the study on migration of micropollutants. For total arsenic concentration two independent methods: HGICP-OES and HGAAS were used for comparison of results of real samples analysis.

[1] M.A. Suner, V. Devesa, I. Rivas, D. Velez and R.J. Montoro: “Application of column switching in high performance liquid chromatography with on line thermo oxidation and detection by HG AAS and HG AFS for the analysis of organoarsenical species in seafood samples”, J. Anal. At. Spectrom., Vol. 16, (2001), pp. 390–397. http://dx.doi.org/10.1039/b007518n10.1039/B007518NSearch in Google Scholar

[2] P. Niedzielski, M. Siepak, J. Przybyłek and J. Siepak: “Arsenic, antimony and selenium in water city of Poznań”, Betagraf, Poznań, 2002, (in Polish). Search in Google Scholar

[3] J.S. Hill, T.A. Arowolo, O.T. Butler, S.R.N. Chenery, J.M. Cook, M.S. Cresser and D.L. Miles: “Atomic spectrometry update. Environmental analysis”, J. Anal. At. Spectrom., Vol. 17, (2002), pp. 284–317. http://dx.doi.org/10.1039/b200833p10.1039/b200833pSearch in Google Scholar

[4] A. Taylor, S. Branch, D. Halls, M. Patriarca and M. White: “Atomic spectrometry update. Clinical and biological materials, foods and beverages”, J. Anal. At. Spectrom., Vol. 17, (2002), pp. 414–455. http://dx.doi.org/10.1039/b201456b10.1039/b201456bSearch in Google Scholar

[5] P. Niedzielski, M. Siepak, J. Siepak and J. Przybyłek: “Determination of different forms of arsenic antimony and selenium in water samples using hydride generation”, Polish. Pol. J. Environ. Stud. Vol. 11, (2002), pp. 219–224. Search in Google Scholar

[6] T. Nakazato, T. Taniguchi, H. Tao, M. Tominaga and A. Miyazaki: “Ion-exclusion chromatography combined with ICP-MS and hybride generation-ICP-MS for the determination of arsenic species in biological matrices”, J. Anal. At. Spectrom., Vol. 15, (2000), pp. 1546–1552. http://dx.doi.org/10.1039/b005981l10.1039/b005981lSearch in Google Scholar

[7] Y. Bohari, A. Astruc, M. Astruc and J. Cloud: “Improvements of hybride generation of the speciation of arsenic in natural freshwater samples by HPLC-HG-AFS”, J. Anal. At. Spectrom., Vol. 16, (2001), pp. 774–778. http://dx.doi.org/10.1039/b101591p10.1039/B101591PSearch in Google Scholar

[8] B. He, G. Jiang and X. Xu: “Arsenic speciation based on ion exchange high-performance liquid chromatography hyphenated with hydride generation atomic fluorescence and on-line UV photo oxidation”, Fresenius J. Anal. Chem., Vol. 368, (2000), pp. 803–808. http://dx.doi.org/10.1007/s00216000059710.1007/s002160000597Search in Google Scholar

[9] J.T. Elteren, V. Stibilij and Z. Slejkovec: “Speciation of inorganic arsenic in some bottled Slovene mineral waters using HPLC-HGAFS and selective coprecipitation combined with FI-HGAFS”, Water Research, Vol. 36, (2002), pp. 2967–2974. http://dx.doi.org/10.1016/S0043-1354(01)00527-910.1016/S0043-1354(01)00527-9Search in Google Scholar

[10] D.L. Tsalev, M. Sperling and B. Welz: “Flow-injection hydride generation atomic absorption spectrometric study of the automated on-line pre-reduction of arsenate, methylarsonate and dimethylarsinate and high-performance liquid chromatographic separation of their L-cysteine complexes”, Talanta, Vol. 51, (2000), pp. 1059–1068. http://dx.doi.org/10.1016/S0039-9140(00)00297-610.1016/S0039-9140(00)00297-6Search in Google Scholar

[11] D.L. Tsalev, M. Sperling and B. Welz: “On-line UV-photooxidation with peroxodisulfate forautomated flow injection and for high-performanceliquid chromatography coupled to hydride generationatomic absorption spectrometry”, Spectrochimica Acta Part B, Vol. 55, (2000), pp. 3390–353. Search in Google Scholar

[12] M.C. Villa-Lojo, E. Alonso-Rodriguez, P. Lopez-Mahia, S. Muniategui-Lorenzo and D. Prada-Rodriguez: “Coupled high performance liquid chromatography-microwave digestion-hydride generation-atomic absorption spectrometry for inorganic and organic arsenic speciation in fish tissue”, Talanta, Vol. 57, (2002), pp. 741–750. http://dx.doi.org/10.1016/S0039-9140(02)00094-210.1016/S0039-9140(02)00094-2Search in Google Scholar

[13] W.Ch. Tseng, M.H. Yang, T.P. Chen and Y.L. Huang: “Automated, continuous, and dynamic speciation of urinary arsenic in the bladder of living organisms using microdialysis sampling coupled on-line with high performance liquid chromatography and hydride generation atomic absorption spectrometry”, Analyst, Vol. 127, (2002), pp. 560–564. http://dx.doi.org/10.1039/b110053j10.1039/b110053jSearch in Google Scholar PubMed

[14] Q. Xie, R. Kerrich, E. Irving, K. Liber and F. Abou-Shakra: “Determination of five arsenic species in aqueous samples by HPLC coupled with a hexapole collision cell ICP-MS”, J. Anal. At. Spectrom., Vol. 17, (2002), pp. 1037–1041. http://dx.doi.org/10.1039/b202172b10.1039/B202172BSearch in Google Scholar

[15] G. Koellensperger, J. Nurmi, S. Hann, G. Stingeder, W.J. Fitz and W.W. Wenzel: “CE-ICP-SFMS and HPIC-ICP-SFMS for arsenic speciation in soil solution and soil water extracts”, J. Anal. At. Spectrom., Vol. 17, (2002), pp. 1042–1047. http://dx.doi.org/10.1039/b202875c10.1039/B202875CSearch in Google Scholar

[16] P. Niedzielski, J. Siepak and M. Siepak: “Total Content of Arsenic, Antimony and Selenium in Groundwater Samples from Western Poland”, Pol. J. Environ. Stud., Vol. 5, (2001), pp. 347–350. Search in Google Scholar

Published Online: 2004-3-1
Published in Print: 2004-3-1

© 2004 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow