Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access March 1, 2004

Evaluation of 13C NMR spectra of cyclopropenyl and cyclopropyl acetylenes by theoretical calculations

Valentine Ananikov
From the journal Open Chemistry

Abstract

A convenient methodology was developed for a very accurate calculation of 13C NMR chemical shifts of the title compounds. GIAO calculations with density functional methods (B3LYP, B3PW91, PBE1PBE) and 6-311+G(2d,p) basis set predict experimental chemical shifts of 3-ethynylcyclopropene (1), 1-ethynylcyclopropane (2) and 1,1-diethynylcyclopropane (3) with high accuracy of 1–2 ppm. The present article describes in detail the effect of geometry choice, density functional method, basis set and effect of solvent on the accuracy of GIAO calculations of 13C NMR chemical shifts. In addition, the particular dependencies of 13C chemical shifts on the geometry of cyclopropane ring were investigated.

[1] H.-U. Reissig and R. Zimmer: “Donor-Acceptor-Substituted Cyclopropane Derivatives and Their Application in Organic Synthesis”, Chem. Rev., Vol. 103, (2003), pp. 1151–1196. http://dx.doi.org/10.1021/cr010016n10.1021/cr010016nSearch in Google Scholar

[2] O.G. Kulinkovich: “The Chemistry of Cyclopropanols”, Chem. Rev., Vol. 103, (2003), pp. 2597–2632; http://dx.doi.org/10.1021/cr010012i10.1021/cr010012iSearch in Google Scholar

[3] Yu.V. Tomilov, I.V. Kostyuchenko and O.M. Nefedov: “Synthesis and properties of nitrogeneous heterocycles containing a spiro-fused cyclopropane fragment”, Rus. Chem. Rev., Vol. 69, (2000), pp. 461–480; http://dx.doi.org/10.1070/RC2000v069n06ABEH00057110.1070/RC2000v069n06ABEH000571Search in Google Scholar

[4] A. de Meijere and S.I. Kozhushkov: “Macrocyclic Structurally Homoconjugated Oligoacetylenes: Acetylene- and Diacetylene-Expanded Cycloalkanes and Rotanes”, Top. Curr. Chem., Vol. 201, (1999), pp. 1–42; Search in Google Scholar

[5] H.N.C. Wong, M.-Y. Hon, C.-W. Tse, Y.-C. Yip, J. Tanko and T. Hudlicky: “Use of cyclopropanes and their derivatives in organic synthesis”, Chem. Rev., Vol. 89, (1989), pp. 165–198; http://dx.doi.org/10.1021/cr00091a00510.1021/cr00091a005Search in Google Scholar

[6] A. de Meijere: “The Bonding Properties of Cyclopropane and Their Chemical Consequences”, Angew. Chem. Int. Ed. Engl., Vol. 18, (1979), pp. 809–826. http://dx.doi.org/10.1002/anie.19790809310.1002/anie.197908093Search in Google Scholar

[7] R. Boese: “Structural Studies of Strained Molecules”, In: B. Halton (Ed.): Advances in Strain in Organic Chemistry, JAI Press, London, 1992, Vol. 2, pp. 191–254; Search in Google Scholar

[8] A.I. Ioffe, V.A. Svyatkin and O.M. Nefedov: Structure of the Derivatives of Cyclopropane, Nauka, Moscow, 1986. Search in Google Scholar

[9] U.M. Dzhemilev, R.I. Khusnutdinov, N.A. Shchadneva, O.M. Nefedov and G.A. Tolstikov: “Some new transformations of cyclopropylacetylene catalyzed by rhodium, palladium and cobalt complexes”, Izv. Akad. Nauk USSR, Ser. Khim., Vol. 10, (1989), pp. 2360–2362. Search in Google Scholar

[10] M.M. Haley, B. Biggs, W.A. Looney and R.D. Gilbertson: “Synthesis of Alkenyl-and Alkynylcyclopropenes”, Tetrahedron Lett., Vol. 36, (1995), pp. 3457–3460. http://dx.doi.org/10.1016/0040-4039(95)00634-O10.1016/0040-4039(95)00634-OSearch in Google Scholar

[11] M.S. Baird: “Thermally Induced Cyclopropene-Carbene Rearrangements: An Overview”, Chem. Rev., Vol. 103, (2003), pp. 1271–1294; http://dx.doi.org/10.1021/cr010021r10.1021/cr010021rSearch in Google Scholar PubMed

[12] V.R. Kartashov, E.V. Skorobogatova and N.S. Zefirov: “The Reactions Of Cyclopropene Compounds With Electrophilic Reagents”, Rus. Chem. Rev., Vol. 62, (1993), pp. 939–953; http://dx.doi.org/10.1070/RC1993v062n10ABEH00005510.1070/RC1993v062n10ABEH000055Search in Google Scholar

[13] M.S. Baird: “Functionalised Cyclopropenes as Synthetic Intermediates”, Top. Curr. Chem., Vol. 144, (1988), pp. 137–154. http://dx.doi.org/10.1007/BFb011123010.1007/BFb0111230Search in Google Scholar

[14] R.D. Gilbertson, T.J.R. Weakley and M.M. Haley: “Preparation, X-ray Crystal Structures, and Reactivity of Alkynylcyclopropenylium Salts”, J. Org. Chem., Vol. 65, (2000), pp. 1422–1430. http://dx.doi.org/10.1021/jo991537210.1021/jo9915372Search in Google Scholar PubMed

[15] R. Boese, D. Blaeser, W.E. Billups, M.M. Haley, W. Luo and B.E. Arney: “X-ray Crystal Structure of 3-Vinylcyclopropene. Gas Phase Synthesis of Simple Cyclopropenes”, J. Org. Chem., Vol. 59, (1994), pp. 8125–8126; http://dx.doi.org/10.1021/jo00105a03210.1021/jo00105a032Search in Google Scholar

[16] R. Boese, D. Blaeser, R. Gleiter, K.H. Pfeifer, W.E. Billups and M.M. Haley: “Structure and photoelectron spectrum of 3,3′-bicyclopropenyl”, J. Am. Chem. Soc., Vol. 115, (1993), pp. 743–746. http://dx.doi.org/10.1021/ja00055a05210.1021/ja00055a052Search in Google Scholar

[17] H.-O. Kalinowski, S. Berger and S. Braun: Carbon-13 NMR Spectroscopy, John Wiley and Sons, Chichester, 1988. 10.1016/S0003-2670(00)81981-9Search in Google Scholar

[18] K. Pihlaja and E. Kleinpeter (Eds.): Carbon-13 NMR Chemical Shifts in Structural and Sterochemical Analysis, VCH Publishers, Deerfield Beach, 1994. Search in Google Scholar

[19] K.K. Baldridge, B. Biggs, D. Blaser, R. Boese, R.D. Gilbertson, M.M. Haley, A.H. Maulitz and J.S. Siegel: “X-Ray crystal and ab initio structure of 3-ethynylcyclopropene: a curiously short carbon-carbon double bond”, Chem. Commun., (1998), pp. 1137–1138. Search in Google Scholar

[20] S.S. Weselowski, J.M. Gonzales, P. von R. Schleyer and H.F. Schaefer: “3-Ethynylcyclopronene: a highly suspicious crystal structure”, Chem. Commun., (1999), pp. 439–440. Search in Google Scholar

[21] J.D. Dunitz: “A curiously short carbon-carbon double bond?”, Chem. Commun., (1999), pp. 2547–2547. 10.1039/a907593cSearch in Google Scholar

[22] A.D. Becke: “Density-functional exchange-energy approximation with correct asymptotic behaviour”, Phys. Rev. A, Vol. 38, (1988), pp. 3098–3100. http://dx.doi.org/10.1103/PhysRevA.38.309810.1103/PhysRevA.38.3098Search in Google Scholar

[23] C. Lee, W. Yang and R.G. Parr: “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density”, Phys. Rev. B, Vol. 37, (1988), pp. 785–789. http://dx.doi.org/10.1103/PhysRevB.37.78510.1103/PhysRevB.37.785Search in Google Scholar

[24] A.D. Becke: “Density-functional thermochemistry. III. The role of exact exchange”, J. Chem. Phys., Vol. 98, (1993), pp. 5648–5652. http://dx.doi.org/10.1063/1.46491310.1063/1.464913Search in Google Scholar

[25] R. Ditchfield, W.J. Hehre and J.A. Pople: “Self-consistent molecular-orbital methods: IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules”, J. Chem. Phys., Vol. 54, (1971), pp. 724–728. http://dx.doi.org/10.1063/1.167490210.1063/1.1674902Search in Google Scholar

[26] R. Krishnan, J.S. Binkley, R. Seeger and J.A. Pople: “Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions”, J. Chem. Phys., Vol. 72, (1980), pp. 650–654. http://dx.doi.org/10.1063/1.43895510.1063/1.438955Search in Google Scholar

[27] R.A. Kendall, T.H. Jr. Dunning and R.J. Harrison: “Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions”, J. Chem. Phys., Vol. 96, (1992), pp. 6796–6806. http://dx.doi.org/10.1063/1.46256910.1063/1.462569Search in Google Scholar

[28] A. de Meijere, S.I. Kozhushkov, R. Boese, T. Haumann, D.S. Yufit, J.A.K. Howard, L.S. Khaikin and M. Tratteberg. “Structural Parameters and Electronic Interaction in Substituted 1,1-Diethynylcyclopropanes—An Experimental Study”, Eur. J. Org. Chem., (2003), pp. 485–492. Search in Google Scholar

[29] T. Haumann, R. Boese, S.I. Kozhushkov, L. Rauch and A. de Meijere: “Structural Aspects of Cyclopropyl Conjugation: Experimental Studies and Ab Initio Calculations”, Liebigs Ann./Recueil, (1997), pp. 2047–2053. Search in Google Scholar

[30] M.D. Harmony, R.N. Nandi, J.V. Tietz, J.-I. Choe, S.J. Getty and S.W. Staley: “Microwave structures of cyanocyclopropane and cyclopropylacetylene. Effects of cyclopropyl π conjugation on structure”, J. Am. Chem. Soc., Vol. 105, (1983), pp. 3947–3951. http://dx.doi.org/10.1021/ja00350a03410.1021/ja00350a034Search in Google Scholar

[31] K. Wolinski, J.F. Hilton and P. Pulay: “Efficient implementation of the gaugeindependent atomic orbital method for NMR chemical shift calculations”, J. Am. Chem. Soc., Vol. 112, (1990), pp. 8251–8260. http://dx.doi.org/10.1021/ja00179a00510.1021/ja00179a005Search in Google Scholar

[32] R. Ditchfield: “Self-consistent perturbation theory of diamagnetism. I. A. gauge-invariant LCAO method for NMR chemical shifts”, Mol. Phys., Vol. 27, (1974), pp. 789–807. http://dx.doi.org/10.1080/0026897740010071110.1080/00268977400100711Search in Google Scholar

[33] T. Helgaker, M. Jaszunski and K. Ruud: “Ab Initio Methods for the Calculation of NMR Shielding and Indirect Spin-Spin Coupling Constans”, Chem. Rev., Vol. 99, (1999), pp. 293–352. http://dx.doi.org/10.1021/cr960017t10.1021/cr960017tSearch in Google Scholar

[34] J.R. Cheeseman, G.W. Trucks, T.A. Keith and M.J. Frisch: “A comparison of models for calculating nuclear magnetic resonance shielding tensors”, J. Chem. Phys., Vol. 104, (1996), pp. 5497–5509. http://dx.doi.org/10.1063/1.47178910.1063/1.471789Search in Google Scholar

[35] G. Rauhut, S. Puyear, K. Wolinski and P. Pulay: “Comparison of NMR Shieldings Calculated from Hartree-Fock and Density Functional Wave Functions Using Gauge-Including Atomic Orbitals”, J. Phys. Chem., Vol. 100, (1996), pp. 6310–6316. http://dx.doi.org/10.1021/jp952912710.1021/jp9529127Search in Google Scholar

[36] J.P. Perdew, K. Burke and Y. Wang: “Generlized gradient approximation for the exchange-correlation hole of a many-electron system”, Phys. Rev. B, Vol. 54, (1996), pp. 16533–16539. http://dx.doi.org/10.1103/PhysRevB.54.1653310.1103/PhysRevB.54.16533Search in Google Scholar

[37] J.P. Perdew, K. Burke and M. Ernzerhof: “Generalized gradient approximation made simple”, Phys. Rev. Lett., Vol. 77, (1996), pp. 3865–3868. http://dx.doi.org/10.1103/PhysRevLett.77.386510.1103/PhysRevLett.77.3865Search in Google Scholar

[38] J.P. Perdew, K. Burke and M. Ernzerhof: “Generalized gradient approximation made simple”, Phys. Rev. Lett., Vol. 78, (1997), pp. 1396–1396. http://dx.doi.org/10.1103/PhysRevLett.78.139610.1103/PhysRevLett.78.1396Search in Google Scholar

[39] E.G. Corley, A.S. Thompson and M. Huntington: “Cyclopropylacetylene”, Organic Syntheses, Vol. 77, (2000), pp. 231–233. Search in Google Scholar

[40] N.S. Zefirov, S.I. Kozhushkov, T.S. Kuznetsova, R. Gleiter and M. Eckert-Maksic: “The synthesis of disubstituted ethylene and acetylene derivatives of cyclopropanes based on 1,1-diacetylcyclopronane”, Zh. Org. Khim., Vol. 22, (1986), pp. 110–121. (In Russian); J. Org. Chem. USSR, Vol. 22, (1986), pp. 95–106, (In English). Search in Google Scholar

[41] J.B. Foresman and A.E. Frisch: Exploring Chemistry with Electronic Structure Methods, Gaussian Inc., Pittsburgh, PA, 1996. Search in Google Scholar

[42] M. Cossi, V. Barone, R. Cammi and J. Tomasi: “Ab initio study of solvated molecules: a new implementation of the polarizable continuum model”, Chem. Phys. Lett., Vol. 255, (1996), pp. 327–335. http://dx.doi.org/10.1016/0009-2614(96)00349-110.1016/0009-2614(96)00349-1Search in Google Scholar

[43] A. Fortunelli and J. Tonmasi: “The Implementation of Density Functional Theory Within the Polarizable Continuum Model for Solvation”, Chem. Phys. Lett., Vol. 231, (1994), pp. 34–39. http://dx.doi.org/10.1016/0009-2614(94)01253-910.1016/0009-2614(94)01253-9Search in Google Scholar

[44] J. Tomasi and M. Persico: “Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent”, Chem. Rev., Vol. 94, (1994), pp. 2027–2094. http://dx.doi.org/10.1021/cr00031a01310.1021/cr00031a013Search in Google Scholar

[45] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A.Jr., Montgomery, R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, M. Head-Gordon, E.S. Replogle and J.A. Pople: “Gaussian 98”, In: Gaussian 98, Pittsburgh, PA, 1998. Search in Google Scholar

[46] G. Schaftenaar and J.H. Noordik: “Molden: a pre- and post-processing program for molecular and electronic structures”, J. Comput.-Aided Mol. Des., Vol. 14, (2000), pp. 123–134. http://dx.doi.org/10.1023/A:100819380543610.1023/A:1008193805436Search in Google Scholar

[47] J.C. Facelli and A.C. de Dios (Eds.): Modelling NMR Chemical Shifts, ACS Symposium series 732, ACS, Washington, 1999. 10.1021/bk-1999-0732Search in Google Scholar

[48] W. Koch and M.C. Holthausen: A Chemist’s Guide to Density Functional Theory, Wiley-VCH, New York, 2000. 10.1002/3527600043Search in Google Scholar

Published Online: 2004-3-1
Published in Print: 2004-3-1

© 2004 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow