Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access September 1, 2004

Theoretical study of structure, vibrational and electronic spectra of isomers of methyl-3-methoxy-2-propenoate

  • Ajit Virdi EMAIL logo , V. Gupta and Archna Sharma
From the journal Open Chemistry


A systematic quantum mechanical study of the possible conformations, their relative stabilities, vibrational and electronic spectra and thermodynamic parameters of methyl-3-methoxy-2-propenoate has been reported for the electronic ground (S0) and first excited (S1) states using time-dependent and time-independent Density Functional Theory (DFT) and RHF methods in extended basis sets. Detailed studies have been restricted to the E-isomer, which is found to be substantially more stable than the Z-isomer. Four possible conformers c′Cc, c′Tc, t′Cc, t′Tc, of which the first two are most stable, have been identified in the S0 and S1 states. Electronic excitation to S1 state is accompanied with a reversal in the relative stability of the c′Cc and c′Tc conformers and a substantial reduction in the rotational barrier between them, as compared with the S0 state. Optimized geometries of these conformers in the S0 and S1 states are being reported. Based on suitably scaled RHF/6-31G** and DFT/6-311G** calculations, assignments have been provided to the fundamental vibrational bands of both these conformers in terms of frequency, form and intensity of vibrations and potential energy distribution across the symmetry coordinates in the S0 state. A complete interpretation of the electronic spectra of the conformers has been provided.

[1] W.O. George, D.V. Hassid and W.F. Maddams: “Conformationals of some αβ-unsaturated carbonyl compounds. Part III. Infrared solution spectra of methyl, [2H3] methyl, ethyl, and [2H5] ethyl acrylates and trans-crotonates”, J. Chem. Soc. Perkin II, (1972), pp. 400–404. Search in Google Scholar

[2] A.J. Bowles, W.O. George and D.B. Cunliffe-Jones: “Conformations of some αβ-unsaturated carbonyl compounds. Part II. Infrared and Raman Spectra of methyl and ethyl acrylate and trans-crotonate”, J. Chem. Soc (B), (1970), pp. 1070–1075. Search in Google Scholar

[3] V. Santhanam, S. Singh and J. Sobhanadri: “Conformational analysis of some acrylates using dipole moment calculations by CNDO/Force method”, Tetrahedron, Vol. 39, No. 24, (1983), pp. 4183–4187. in Google Scholar

[4] T. Egawa, S. Maekawa, H. Fujiwara, H. Takeuchi and S. Konaka: “Molecular structure and conformation of methyl acrylate. A gas electron diffraction study augmented by ab initio calculation and rotational constants”, J. Mol. Struct. (Theochem), Vol. 352/353, (1995), pp. 193–201. Search in Google Scholar

[5] M.L.M. Rocco, M.C.A. Lopes, C.A. Lucas, E. Hollauer, E.E. Monteiro and G.G.B. de Souza: “Excitation of the methyl methacrylate molecule in the VUV range by angle-resolved EELS”, Chem. Phys., Vol. 223, (1997), pp. 15–21. in Google Scholar

[6] E. Hollauer, M.L.M. Rocco, M.C.A. Lopes and G.G.B. de Souza: “An ab initio study of the valence excitation of methyl methacrylate as observed by EELS”, J. Electron Spectrosc. Relat. Phenom., Vol. 104, (1999), pp. 31–39. in Google Scholar

[7] A. Virdi, A. Sharma and V.P. Gupta: “Molecular orbital study of torsional potentials, physicochemical properties and electronic spectra of methyl acrylate in different electronic states”, Indian J. Phys., Vol. 75B, No. 6, (2001), pp. 509–514. Search in Google Scholar

[8] A. Virdi, V.P. Gupta and A. Sharma: “Ab initio studies on conformation, vibrational and electronic spectra of methyl methacrylate”, J. Mol. Struct. (Theochem), Vol. 634, (2003), pp. 53–65. in Google Scholar

[9] A. Virdi, V.P. Gupta and A. Sharma: “Molecular structure, conformation, vibrational and electronic spectra of methyl trans crotonate”, J. Mol. Struct. (Theochem), Vol. 678, (2004), pp. 239–247. in Google Scholar

[10] K. Topek, V. Vsetecka and M. Prochazka: “(E-Z)-isomerization of 3-substituted methyl 2-propenoates”, Collect. Czech. Chem. Commun., Vol. 43, (1978), pp. 2395–2402. Search in Google Scholar

[11] V. Vsetecka, J. Pecka and M. Prochazka: “(E-Z)-isomerization of unsaturated esters X−CH=CH−COOCH3”, Collect. Czech. Chem. Commun., Vol. 47, (1982), pp. 277–285. Search in Google Scholar

[12] P. Pulay, G. Fogarasi, G. Pongor, J.E. Boggs and A. Vargha: “Combination of theoretical ab initio and experimental information to obtain reliable harmonic force constants. Scaled quantum mechanical (SQM) force fields for glyoxal, acrolein, butadiene, formaldehyde and ethylene”, J. Am. Chem. Soc., Vol. 105, (1983), pp. 7037–7047. in Google Scholar

[13] J. Baker, A.A. Jarzecki and P. Pulay: “Direct scaling of primitives valence force constants: An alternative approach to scaled quantum mechanical force fields”, J. Phys. Chem. A, Vol. 102, (1998), pp. 1412–1424. in Google Scholar

[14] R.E. Stratmann and G.E. Scuseria: “An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules”, J. Chem. Phys., Vol. 109, (1998), pp. 8218–8224. in Google Scholar

[15] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery, Jr., R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, P. Salvador, J.J. Dannenberg, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, A.G. Baboul, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzalez, M. Head-Gordon, E.S. Replogle and J.A. Pople: Computer Program Gaussian98, Gaussian, Inc., Pittsburgh PA, 2001. Search in Google Scholar

[16] M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S.J. Su, T.L. Windus, M. Dupuis and J.A. Montgomery: “Computer Program GAMESS”, J. Comput. Chem., Vol. 14, (1993), pp. 1347–1369. in Google Scholar

[17] S. Thakur, V.P. Gupta and B. Ram: “Semi-empirical calculation and normal coordinate study of the conformation and electronic and vibrational spectra of acrolein”, Spectrochimica Acta A, Vol. 53, (1997), pp. 749–759. in Google Scholar

[18] S. Thakur and V.P. Gupta: “Quantum mechanical study of the electronic spectra, torsional potential and physico-chemical properties of rotational conformers of methyl vinyl ketone in different electronic states”, Indian J. Phys., Vol. 73B, No. 4, (1999), pp. 651–659. Search in Google Scholar

[19] G. Buemi and F. Zuccarello: “Molecular orbitals and ionization potentials of α,β-unsaturated carbonyl compounds”, Gazzetta Chimica Italian, Vol. 113, (1983), pp. 865–868. Search in Google Scholar

[20] H. Yoshida, K. Takeda, J. Okamura, A. Ehara and H. Matsuura: “A new approach to vibrational analysis of large molecules by Density Functional Theory: Wavenumber-Linear scaling method”, J. Phys. Chem. A, Vol. 106, (2002), pp. 3580–3586. in Google Scholar

[21] H. Yoshida, A. Ehara and H. Matsuura: “Density functional vibrational analysis using wavenumber-linear scale factors”, Chem. Phys. Lett., Vol. 325, (2000), pp. 477–483. in Google Scholar

[22] M. Dulce, G. Faria, J.J.C. Teixeira-Dias and R. Fausto: “Vibrational spectra and structure of methyl trans-crotonate”, Vibrational Spectr., Vol. 2, (1991), pp. 107–123. in Google Scholar

[23] E. Winterfeldt and H. Preuss: “Addition to the triple bond V. Steric course of additions to the triple bond”, Chem. Ber., Vol. 99, No. 2, (1966), pp. 450–458. Search in Google Scholar

[24] H.O. House, W.L. Roelofo and B.M. Trost: “The chemistry of carbanions. XI. Michael reactions with 2-methylcyclopentanone and 2-methylcyclohexanone”, J. Org. Chem., Vol. 31, (1966), pp. 646–655. Search in Google Scholar

Published Online: 2004-9-1
Published in Print: 2004-9-1

© 2004 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 21.2.2024 from
Scroll to top button