Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access September 1, 2004

The role of quantum interference in determining transport properties of molecular bridges

Kamil Walczak
From the journal Open Chemistry

Abstract

An analytical approach to the electron transport phenomena in molecular devices is presented. The analyzed devices are composed of various molecular bridges attached to two semi-infinite electrodes. Molecular system is described within the tight-binding model, while the coupling to the electrodes is analyzed through the use of Newns-Anderson chemisorption theory. The current-voltage (I-V) characteristics are calculated through the integration of transmission function in the standard Landauer formulation. The essential question of quantum interference effect of electron waves is diseussed in three aspects: (i) the geometry of a molecular bridge, (ii) the presence of an external magnetic field and (iii) the location of chemical substituent.

[1] A. Yazdani, D.M. Eigler and N.D. Lang: “Off-resonance conduction through atomic wires”, Science, Vol. 272, (1996), pp. 1921–1924. Search in Google Scholar

[2] M.A. Reed, C. Zhou, C.J. Muller, T.P. Burgin and J.M. Tour: “Conductance of a Molecular Junction”, Science, Vol. 278, (1997), pp. 252–254. http://dx.doi.org/10.1126/science.278.5336.25210.1126/science.278.5336.252Search in Google Scholar

[3] R.H.M. Smit, Y. Noat, C. Untiedt, N.D. Lang, N.C. van Hemert and J.M. van Ruitenbeek: “Measurement of the conductance of a hydrogen molecule”, Nature, Vol. 419, (2002), pp. 906–909. http://dx.doi.org/10.1038/nature0110310.1038/nature01103Search in Google Scholar PubMed

[4] L.A. Bumm, J.J. Arnold, M.T. Cygan, T.D. Dunbar, T.P. Burgin, L. Jones II, D.L. Allara, J.M. Tour and P.S. Weiss: “Are Single Molecular Wires Conducting?”, Science, Vol. 271, (1996), pp. 1705–1707. Search in Google Scholar

[5] R.P. Andres, J.O. Bielefeld, J.I. Henderson, D.B. Janes, V.R. Kolagunta, C.P. Kubiak, W.J. Mahoney and R.G. Osifchin: “Self-Assembly of a Two- Dimensional Superlattice of Molecularly Linked Metal Clusters”, Science, Vol. 273, (1997), pp. 1690–1693. Search in Google Scholar

[6] J. Chen, M.A. Reed, A.M. Rawlett and J. M. Tour: “Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device”, Science, Vol. 286, (1999), pp. 1550–1552. http://dx.doi.org/10.1126/science.286.5444.155010.1126/science.286.5444.1550Search in Google Scholar PubMed

[7] T. Kostyrko: “An analytic approach to the conductance and I-V characteristics of polymeric chains”, J. Phys.: Condens. Matter, Vol. 14, (2002), pp. 4393–4405. http://dx.doi.org/10.1088/0953-8984/14/17/31210.1088/0953-8984/14/17/312Search in Google Scholar

[8] M.A. Reed: “Molecular-Scale Electronics”, Proc. IEEE, Vol. 87, (1999), pp. 652–658. http://dx.doi.org/10.1109/5.75252010.1109/5.752520Search in Google Scholar

[9] V. Mujica, A.E. Roitberg and M.A. Ratner: “Molecular wire conductance: Electrostatic potential spatial profile”, J. Chem. Phys., Vol. 112, (2000) pp. 6834–6839. http://dx.doi.org/10.1063/1.48125810.1063/1.481258Search in Google Scholar

[10] W. Tian, S. Datta, S. Hong, R. Reifenberger, J.I. Henderson and C.P. Kubiak: “Conductance spectra of molecular wires”, J. Chem. Phys., Vol., 109, (1998), pp. 2874–2882. http://dx.doi.org/10.1063/1.47684110.1063/1.476841Search in Google Scholar

[11] V. Mujica, M. Kemp and M.A. Ratner: “Electron conduction in molecular wires. I. A scattering formalism”, J. Chem. Phys., Vol. 101, (1994), pp. 6849–6855. http://dx.doi.org/10.1063/1.46831410.1063/1.468314Search in Google Scholar

[12] V. Mujica, M. Kemp and M.A. Ratner: “Electron conduction in molecular wires. II. Application to scanning microscopy”, J. Chem. Phys., Vol. 101, (1994), pp. 6856–6864. http://dx.doi.org/10.1063/1.46831510.1063/1.468315Search in Google Scholar

[13] V. Mujica, M. Kemp, A.E. Roitberg and M.A. Ratner: “Current-voltage characteristics of molecular wires: Eigenvalue staircase, Coulomb blockade, and rectification”, /emph J. Chem. Phys., Vol. 104, (1996), pp. 7296–7305. http://dx.doi.org/10.1063/1.47139610.1063/1.471396Search in Google Scholar

[14] S.N. Yaliraki, A.E. Roitberg, C. Gonzalez, V. Mujica and M.A. Ratner: “The injecting energy at molecule/metal interfaces: implications for conductance of molecular junctions from an ab inition molecular description”, J. Chem. Phys., Vol. 111, (1999), pp. 6997–7002. http://dx.doi.org/10.1063/1.48009610.1063/1.480096Search in Google Scholar

[15] A. Sadlej: Elementary Methods of Quantum Chemistry, PWN, Warszawa 1966 (in Polish). Search in Google Scholar

[16] J.M. Lopez-Castillo, A. Filali-Mouhim and J.P. Jay-Guerin: “Superexchange coupling and non-nearest-neighbor interactions in electron transfers”, J. Phys. Chem., Vol. 97, (1993), pp. 9266–9269. http://dx.doi.org/10.1021/j100139a00210.1021/j100139a002Search in Google Scholar

[17] A. Cheong, A.E. Roitberg, V. Mujica and M.A. Ratner: “Resonances and interference effects on the effective electronic coupling in electron transfer”, J. Photochem. Photobiol. A: Chemistry, Vol. 82, (1994), pp. 81–86. http://dx.doi.org/10.1016/1010-6030(94)02020-510.1016/1010-6030(94)02020-5Search in Google Scholar

[18] E.G. Emberly and G. Kirczenow: “Antiresonances in molecular wires”, J. Phys.: Condens. Matter, Vol. 11, (1999), pp. 6911–6926. http://dx.doi.org/10.1088/0953-8984/11/36/30810.1088/0953-8984/11/36/308Search in Google Scholar

[19] L.D. Landau and E.M. Lifszitz: Quantum Mechanics, PWN, Warszawa 1975 (in Polish). Search in Google Scholar

[20] J.P. Carini, K.A. Multtalib and S.R. Nagel: “Origin of Aharonov-Bohm Effect with Half Flux Quanta”, Phys. Rev. Lett., Vol. 53, (1984), pp. 102–105. http://dx.doi.org/10.1103/PhysRevLett.53.10210.1103/PhysRevLett.53.102Search in Google Scholar

[21] M.A. Davidovich and E.V. Anda: “Current fluctuation in the Bohm-Aharonov effect”, Phys. Rev. B, Vol. 50, (1994), pp. 15453–15456. http://dx.doi.org/10.1103/PhysRevB.50.1545310.1103/PhysRevB.50.15453Search in Google Scholar PubMed

[22] M.A. Davidovich, E.V. Anda, J.R. Iglesias and G. Chiappe: “Bohm-Aharonov and Kondo effects on tunneling currents in mesoscopic rings”, Phys. Rev. B., Vol. 55, (1997), pp. R7335-R7338. http://dx.doi.org/10.1103/PhysRevB.55.R733510.1103/PhysRevB.55.R7335Search in Google Scholar

[23] K. Haule and J. Bonča: “Inelastic tunneling through mesoscopic structures”, Phys. Rev. B, Vol. 59, (1999), pp. 13087–13093. http://dx.doi.org/10.1103/PhysRevB.59.1308710.1103/PhysRevB.59.13087Search in Google Scholar

[24] A.Y. Smirnov, N.J.M. Horing and L.G. Mourokh: “Aharonov-Bohm phase effects and inelastic scattering in transport through a parallel tunnel coupled symmetric double-dot device”, Appl. Phys. Lett., Vol. 77, (2000), pp. 2578–2580. http://dx.doi.org/10.1063/1.131754210.1063/1.1317542Search in Google Scholar

[25] B. Pannetier, J. Chausay, R. Rarnmal and P. Gandit: “Magnetic Flux Quantization in the Weak-Localization Regime of a Nonsuperconducting Metal”, Phys. Rev. Lett., Vol. 53, (1984), pp. 718–721. http://dx.doi.org/10.1103/PhysRevLett.53.71810.1103/PhysRevLett.53.718Search in Google Scholar

[26] C.O. Umbach, C. van Hasendock, R.B. Laibowitz, R.B. Washburn and R.A. Webb: “Observation of h/e Aharonov-Bohm Oscillations in Normal-Metal Rings”, Phys. Rev. Lett., Vol. 54, (1985), pp. 2696–2699. http://dx.doi.org/10.1103/PhysRevLett.54.269610.1103/PhysRevLett.54.2696Search in Google Scholar PubMed

[27] N.D. Lang and Ph. Avouris: “Carbon-Atom Wires: Charge-Transfer Doping, Voltage Drop, and the Effect of Distortion”, Phys. Rev. Lett., Vol. 84, (2000), pp. 358–361. http://dx.doi.org/10.1103/PhysRevLett.84.35810.1103/PhysRevLett.84.358Search in Google Scholar PubMed

[28] M. Di Ventra, S.T. Pantelides and N.D. Lang: “Current-Induced Forces in Molecular Wires”, Phys. Rev. Lett., Vol. 88, (2002), pp. 046801. http://dx.doi.org/10.1103/PhysRevLett.88.04680110.1103/PhysRevLett.88.046801Search in Google Scholar PubMed

[29] K. Walczak: “Inelastic transport through molecular wires”, (2003), pp. 1–10, http//arxiv.org/abs/cond-mat/0306174. Search in Google Scholar

Published Online: 2004-9-1
Published in Print: 2004-9-1

© 2004 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow