Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access March 1, 2003

Hyperpolarizability of 6-vertex carboranes quantum chemical study

Kyrill Suponitsky and Tatiana Timofeeva
From the journal Open Chemistry

Abstract

Structure and molecular first hyperpolarizability (β) of nitro-amino-substituted 6-vertex 1,6-carboranes are investigated by means of DFT calculations. The results obtained have revealed that the relative orientation of substituents with respect to the carborane cage influences bond lengths distribution in the cage, which leads to significant changes in the values of hyperpolarizabilities. Calculations with different basis sets have demonstrated that the value of β is not significantly affected by the choice of basis set. The calculated data shows that hyperpolarizability of carborane molecules substituted for carbon atoms is lower than when substituted for boron atoms. For latter molecule, the value of β is of the same order as that of para-nitroaniline molecule.

[1] D.S. Chemla and J. Zyss (Eds.): Nonlinear Optical Properties of Organic Molecules and Crystals, Academic Press, Orlando, 1987. Search in Google Scholar

[2] P.N. Prasad and D.J. Williams (Eds.): Introduction to Nonlinear Optical Effects in Molecules and Polymers, Wiley, New York, 1991. Search in Google Scholar

[3] S.R. Marder, J.E. Sohn, G.D. Stucky (Eds.): Materials for Nonlinear Optics, ACS Symposium Series 455, American Chemical Society, Washington, 1991. 10.1021/bk-1991-0455Search in Google Scholar

[4] L.-T. Cheng, W. Tam, S.H. Stevenson, G.R. Meredith, G. Rikken, S.R. Marder: “Experimental Investigations of Organic Molecular Nonlinear Optical Polarizabilities. 1. Methods and Results on Benzene and Stilbene Derivatives”, J. Phys. Chem., Vol. 95, (1991), pp. 10631–10643. http://dx.doi.org/10.1021/j100179a02610.1021/j100179a026Search in Google Scholar

[5] L.-T. Cheng, W. Tam, S.R. Marder, A.E. Stiegman, G. Rikken, C.W. Spangler: “Experimental Investigations of Organic Molecular Nonlinear Optical Polarizabilities. 2. A Study of Conjugation Dependences”, J. Phys. Chem., Vol. 95, (1991), pp. 10643–10652. http://dx.doi.org/10.1021/j100179a02710.1021/j100179a027Search in Google Scholar

[6] D.R. Kanis, M.A. Ratner, T.J. Marks: “Design and Construction of Molecular Assemblies with Large Second-Order Optical Nonlinearities. Quantum Chemical Aspects”, Chem. Rev., Vol. 94, (1994), pp. 195–242. http://dx.doi.org/10.1021/cr00025a00710.1021/cr00025a007Search in Google Scholar

[7] K.J. Drost, A.K.-Y. Jen, V.P. Rao: “Designing Organic NLO Materials”, Chem Tech, (1995), pp. 16–24. Search in Google Scholar

[8] V.P. Rao, A.K.-Y. Jen, J. Chandrasekhar, I.N.N. Namboothiri, A. Rathna: “The Important Role of Heteroaromatics in the Design of Efficient Second-Order Nonlinear Optical Molecules: Theoretical Investigation on Push-Pull Heteroaromatic Stilbenes”, J. Am. Chem. Soc., Vol. 118, (1996), pp. 12443–12448. http://dx.doi.org/10.1021/ja960136q10.1021/ja960136qSearch in Google Scholar

[9] T. Verbiest, S. Houbrechts, M. Kauranen, K. Clays, A. Persoons: “Second-Order Nonlinear Optical Materials: Recent Advances in Chromophore Design”, J. Mater. Chem., Vol. 7, (1997), pp. 2175–2189. http://dx.doi.org/10.1039/a703434b10.1039/a703434bSearch in Google Scholar

[10] E.M. Breitung, C.-F. Shu, R.J. McMahon: “Thiazole and Thiophene Analogues of Donor-Acceptor Stilbenes: Molecular Hyperpolarizabilities and Structure-Property Relationships”, J. Am. Chem. Soc., Vol. 122, (2000), pp. 1154–1160. http://dx.doi.org/10.1021/ja993036410.1021/ja9930364Search in Google Scholar

[11] R.E. Williams: “The Polyborane, Carborane, Carbocation Continuum: Architectural Patterns”, Chem. Rev., Vol. 92, (1992), pp. 177–207. http://dx.doi.org/10.1021/cr00010a00110.1021/cr00010a001Search in Google Scholar

[12] V.I. Bregadze: “Dicarba-closo-dodecaboranes C2B10H12 and Their Derivatives”, Chem. Rev., Vol. 92, (1992), pp. 209–223. http://dx.doi.org/10.1021/cr00010a00210.1021/cr00010a002Search in Google Scholar

[13] J. Plešek: “Potential Applications of the Boron Cluster Compounds”, Chem. Rev., Vol. 92, (1992), pp. 269–278. http://dx.doi.org/10.1021/cr00010a00510.1021/cr00010a005Search in Google Scholar

[14] B.M. Gimarc and M. Zhao: “Three-Dimensional Hückel Theory for closo-Carboranes”, Inorg. Chem., Vol. 35, (1996), pp. 825–834. http://dx.doi.org/10.1021/ic950666810.1021/ic9506668Search in Google Scholar

[15] D.M. Murphy, D.M.P. Mingos, J.M. Forward: “Synthesis of Icosahedral Carboranes for Second-harmonic Generation. Part 1”, J. Mater. Chem., Vol. 3, (1993), pp. 67–76. http://dx.doi.org/10.1039/jm993030006710.1039/jm9930300067Search in Google Scholar

[16] D.M. Murphy, D.M.P. Mingos, J.L. Haggitt, H.R. Powell, S.A. Westcott, T.B. Marder, N.J. Taylor, D.R. Kanis: “Synthesis of Icosahedral Carboranes for Second-harmonic Generation. Part 2”, J. Mater. Chem., Vol. 3, (1993), pp. 139–148. http://dx.doi.org/10.1039/jm993030013910.1039/jm9930300139Search in Google Scholar

[17] J. Abe, N. Nemoto, Y. Nagase, Y. Shirai, T. Iyoda: “A New Class of Carborane Compounds for Second-Order Nonlinear Optics: Ab Initio Molecular Orbital Study of Hyperpolarizabilities for 1-(1′, X′-Dicarba-closo-dodecaborane-1′-yl)-closo-dodecaborate Dianion (X = 2, 7, 12)”, Inorg. Chem., Vol. 37, (1998), pp. 172–173. http://dx.doi.org/10.1021/ic970809l10.1021/ic970809lSearch in Google Scholar

[18] B. Grüner, Z. Janoušek, B. King, J.N. Woodford, C.H. Wang, V. Všeteka, J. Michl: “Synthesis of 12-Substituted 1-Carba-closo-dodecaborate Anions and First Hyperpolarizability of the 12-C7H 6+−CB11H 11− Ylide”, J. Am. Chem. Soc., Vol. 121, (1999), pp. 3122–3126. http://dx.doi.org/10.1021/ja982368q10.1021/ja982368qSearch in Google Scholar

[19] D.G. Allis and J.T. Spencer: “Polyhedral-Based Nonlinear Optical Materials. Part 1. Theoretical Investigation of Some New High Nonlinear Optical Response Compounds Involving Carboranes and Charged Aromatic Donors and Acceptors”, J. Organomet. Chem., Vol. 614-615, (2000), pp. 309–313. http://dx.doi.org/10.1016/S0022-328X(00)00589-110.1016/S0022-328X(00)00589-1Search in Google Scholar

[20] D.G. Allis and J.T. Spencer: “Polyhedral-Based Nonlinear Optical Materials. 2. Theoretical Investigation of Some New High Nonlinear Optical Response Compounds Involving Polyhedral Bridges with Charged Aromatic Donors and Acceptors”, Inorg. Chem., Vol. 40, (2001), pp. 3373–3380. http://dx.doi.org/10.1021/ic000776110.1021/ic0007761Search in Google Scholar

[21] J. Taylor, J. Caruso, A. Newlon, U. Englich, K. Ruhlandt-Senge, J.T. Spencer: “Polyhedral-Based Nonlinear Optical Materials. 3.1. Synthetic Studies of Cyclopentadiene- and Cycloheptatriene-Substituted Polyhedral Compounds: Synthesis of 1,12-[(C7H7)C2B10H10(C5H3Me2)] and Related Species”, Inorg. Chem., Vol. 40, (2001), pp. 3381–3388. http://dx.doi.org/10.1021/ic000777t10.1021/ic000777tSearch in Google Scholar

[22] M.J. Frisch, G.W. Trucks, H.B. Schlegel, P.M.W. Gill, B.G. Johnson, M.A. Robb, J.R. Cheeseman, T. Keith, G.A. Petersson, J.A. Montgomery, K. Raghavachari, M.A. Al-Laham, V.G. Zakrzewski, J.V. Ortiz, J.B. Foresman, J. Cioslowski, B.B. Stefanov, A. Nanayakkara, M. Challacombe, C.Y. Peng, P.Y. Ayala, W. Chen, M.W. Wong, J.L. Andres, E.S. Replogle, R. Gomperts, R.L. Martin, D.J. Fox, J.S. Binkley, D.J. Defrees, J. Baker, J.P. Stewart, M. Head-Gordon, C. Gonzales, J.A. Pople: Gaussian 94, Edition E.2, Gaussian Inc., Pittsburgh, PA, 1995. Search in Google Scholar

[23] H. Reis, M.G. Papadopoulos, I. Boustani: “DFT calculations of static dipole polarizabilities and hyperpolarizabilities for the boron clusters Bn (n=3–8, 10)”, Int. J. Quant. Chem., Vol. 78, (2000), pp. 131–135. http://dx.doi.org/10.1002/(SICI)1097-461X(2000)78:2<131::AID-QUA6>3.0.CO;2-310.1002/(SICI)1097-461X(2000)78:2<131::AID-QUA6>3.0.CO;2-3Search in Google Scholar

[24] A. Franken, W. Preetz, M. Rath, K.-F. Hesse: “Preparation of mononitropentahydrohexaborate(2-) and crystal structure of M2[B6H5(NO2)], M=K, Cs”, Z. Naturforsch., Teil B, Vol. 48, (1993), pp. 1727–1731. Search in Google Scholar

[25] C. Drewes and W. Preetz: “Synthesis and Spectroscopic Characterization of Methylnitro-closo-hexaborates and Crystal Structures of cis-(Ph4As)2[B6H4(CH3)(NO2)], fac-(Ph4As)2[B6H3(CH3)(NO2)2]· CH3CN and mer-(Ph4P)2[B6H3(CH3)(NO2) 2c ]”, Z. Naturforsch., Teil B, Vol. 54, (1999), pp. 349–356. Search in Google Scholar

[26] C. Drewes and W. Preetz: “Synthesis, Spectra and Crystal Structure of cis-Monobenzylmononitrotetrahydro-closo-hexaborate(2-)”, Z. Naturforsch., Teil B, Vol. 54, (1999), pp. 1219–1221. Search in Google Scholar

[27] A. Domenicano: In: A. Domenicano and I. Hargittai (Ed.): Accurate Molecular Structures: Their Determination and Importance, Oxford University Press, Oxford and New York, 1992. Search in Google Scholar

Published Online: 2003-3-1
Published in Print: 2003-3-1

© 2003 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow