Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access December 1, 2004

A reducing-difference IR-spectral study of 4-aminopyridine

  • Michail Arnaudov EMAIL logo , Bojidarka Ivanova and Shishman Dinkov
From the journal Open Chemistry

Abstract

The IR-spectra of 4-aminopyridine (4-AP) in solution and in the solid state have been analyzed, using the reducing-difference procedure. Defining a more precise band assignment of a part of the characteristic frequencies of 4-AP, the data obtained proved in particular a Fermi-resonance splitting of the symmetric NH2-stretch.

[1] A. Loboda and C.M. Armstrong: “Resolving the Gating Charge Movement Associated with Late Transitions in K Channel Activation”, Biophys. Journal, Vol. 81, (2001), pp. 905–916. http://dx.doi.org/10.1016/S0006-3495(01)75750-510.1016/S0006-3495(01)75750-5Search in Google Scholar

[2] C. Hayes, K.C. Katz, M.A. Devane, J.G. Hsieh, J.T.C., Wolfe, D.L. Potter and P.J.A.R. Blight: “Pharmacokinetics of an Immediate-Release Oral Formulation of Fampridine (4-Aminopyridine) in normal Subjects and Patients with Spinal Cord Injury”, J. Clin. Pharmacol., Vol. 43, (2003), pp. 379–385. http://dx.doi.org/10.1177/009127000325138810.1177/0091270003251388Search in Google Scholar

[3] R. Ballardini, M.T. Gandolfi, V. Balzani, F.H. Kohnke and J.F. Stoddart: “Second-Sphere Photochemistry and Photophysics: Luminescence of the [Pt(bpy)(NH3)2]2⊕-Dibenzo[30]crown-10 Adduct”, Angew. Chem., Int. Ed. Engl., Vol. 27, (1988), pp. 692–701. http://dx.doi.org/10.1002/anie.19880692110.1002/anie.198806921Search in Google Scholar

[4] Z. Dega-Szafran, A. Kania, B. Nowak-Widra and M. Szafran: “UV, 1H and 13C NMR spectra, and AM1 studies of protonation of aminopyridines”, J. Mol. Struct., Vol. 322, (1994), pp. 223–232. http://dx.doi.org/10.1016/0022-2860(94)87039-X10.1016/0022-2860(94)87039-XSearch in Google Scholar

[5] T.J. Prior and M.J. Rosseinsky: “Crystal engineering of a 3-D coordination polymer from 2-D building blocks”, Chem. Commun., (2001), pp. 495–497. Search in Google Scholar

[6] E. Spiner: “The vibrational spectra and structures of the hydrochlorides of aminopyridines”, j. Chem. Soc., (1962), pp. 3119–3125. Search in Google Scholar

[7] B.D. Batts and E. Spiner: “Vibration spectral and structural comparison of the 4-aminopuridine cation with the 4-hydroxypiridinium N- and C-deuterated, and N-methylated ions. Relevant NMR. spectral studies”, Aust. J. Chem., Vol. 22, (1969), pp. 2595–2610. http://dx.doi.org/10.1071/CH969259510.1071/CH9692595Search in Google Scholar

[8] M.G. Arnaudov, B.B. Ivanova and Sh. Dinkov: “A linear dichroic infrared (IRLD) solid state spectral study of 4-aminopyridine”, Vibrational Spectroscopy, (2004), submitted. 10.1016/j.vibspec.2004.08.003Search in Google Scholar

[9] B. Jordanov, R. Nentchovska and B. Schrader: “FT-IR linear dichroic solute spectra of nematic solutions as a tool for IR band assignment”, J. Mol. Struct., Vol. 297, (1993), pp. 401–406. http://dx.doi.org/10.1016/0022-2860(93)80195-210.1016/0022-2860(93)80195-2Search in Google Scholar

[10] B. Jordanov and B. Schrader: “Reduced IR-LD spectra of substances oriented as nematic solutions”, J. Mol. Struct., Vol. 347, (1995), pp. 389–398. http://dx.doi.org/10.1016/0022-2860(95)08561-910.1016/0022-2860(95)08561-9Search in Google Scholar

[11] M.G. Arnaudov: “The influence of the medium on the infrared spectrum of self-associated systems”, Intern. J. Vibr. Spectrosc., Vol. 5, (2001), pp. 1–18. Search in Google Scholar

[12] M.G. Arnaudov and Sh. Dinkov: “IR-LD-spectral study on the self-association effects of 2-aminopyridine”, J. Mol. Struct., Vol. 476, (1999), pp. 235–241. http://dx.doi.org/10.1016/S0022-2860(98)00584-510.1016/S0022-2860(98)00584-5Search in Google Scholar

[13] M.G. Arnaudov and Y. Dimitriev: “Study on the structural transition in binary tellurite glasses by means of reduced infrared spectra”, Phys. Chem. Glasses, Vol. 42, (2001), pp. 99–102. Search in Google Scholar

[14] C.L. Angyal and R.L. Werner: “The tautomerism of N-heteroaromatic Amines. Part II. Infrared spectroscopic evidence”, J. Chem. Soc., (1952), pp. 2911–2915. Search in Google Scholar

[15] J.D.S. Goulden: “The structure of the aminopyridines”, J. Chem. Soc., (1952), pp. 2939–2940. Search in Google Scholar

[16] S.F. Maeson: “The frequencies and intensities of the NH stretching vibrations in primary amines”, J. Chem. Soc., (1958), pp. 3619–2627. Search in Google Scholar

[17] K.V. Ramiah and P.G. Puranik: “Infrared Spectroscopic Studies of Association of amino-pyridines”, J. Mol. Spectrosc., Vol. 7, (1961), pp. 89–104. http://dx.doi.org/10.1016/0022-2852(61)90345-910.1016/0022-2852(61)90345-9Search in Google Scholar

[18] W.K. Thompson: “Infrared absorbtion spectra of Dimethyl sulphoxide solutions. Part I. Heterocyclic amines”, J. Chem. Soc., (1962), pp. 617–621. 10.1039/jr9620000617Search in Google Scholar

[19] S. Akyuz: “The FT-IR spectroscopic investigation of transition metal(II) 4-aminopyridine tetracyanonickelate complexes”, J. Mol. Struct., Vol. 482, (1999), pp. 171–174. http://dx.doi.org/10.1016/S0022-2860(98)00638-310.1016/S0022-2860(98)00638-3Search in Google Scholar

[20] Y. Buyukmurat and S. Akyuz: “Theoretical and experimental studies of IR spectra of 4-aminopyridine metal(II) complexes”, J. Mol. Struct., Vol. 651, (2003), pp. 533–539. http://dx.doi.org/10.1016/S0022-2860(02)00674-910.1016/S0022-2860(02)00674-9Search in Google Scholar

[21] H. Wolff and D. Staschewski: “Raman spectroskopishe Utersuchungen die fluessingen primaeren aliphatishen Aminen. 2. Mitteilung. Eingehendere Deutung der an den NH-Valenzbanden gewonnen Ergebnisse”, Ber. Bunsenges. Phys. Chem., Vol. 66, (1962), pp. 140–155. Search in Google Scholar

[22] J. Lauransan, P. Pineau and M.-T. Josier: “Etude par spectroscopie infrarouge des association moleculaires entre la parabromoaniline et divers solvents”, Ann. Chim., Vol. 9, (1964), pp. 213–227. Search in Google Scholar

[23] J. Lauransan, J. Corset and M.-T. Forel: “Application du calcul de vibration a l'etude par spectrometrie infrarouge des complexes formee par liason hydrogene entre les groupements XH2 on XH3 et divers acceptenrs de proton”, Ann. Chim., Vol. 3, (1968), pp. 109–119. Search in Google Scholar

[24] H. Wolff and D. Horn: “Ueber die Fermi-Resonanz bei der Wasserstoffbrueckenassonziation primaerer aliphatisher Amine”, Ber. Bunsenges. Phys. Chem., Vol. 72, (1968), pp. 419–429. Search in Google Scholar

[25] H. Wolff and D. Horn: “Ultrarotspektroskopishe Untersuchungen der Wasserstoffbrueckenassoziation von 2,2,2-Trifluoraethylamin. 1. Mitteilung. Die Messesgebnisse und ihre elementare Deutung”, Ber. Bunsenges. Phys. Chem., Vol. 71, (1967), pp. 467–478. Search in Google Scholar

[26] H. Wolff and D. Mathias: “Hydrogen bonding and Fermi-resonance of aniline”, J. Phys. Chem., Vol. 77, (1973), pp. 2081–2084. http://dx.doi.org/10.1021/j100636a01010.1021/j100636a010Search in Google Scholar

[27] M.G. Arnaudov and Sh. Dinkov: “IR-spectral study of self-association effects of 2-aminopyridine in solution”, Spectroscopy Letters., Vol. 31, (1998), pp. 1687–1703. Search in Google Scholar

[28] M. Chao and E. Schempp: “An X-ray and NQR study of 4-aminopyridine and related aromatic amines”, Acta. Crystall., Vol. B33, (1977), pp. 1557–1564. http://dx.doi.org/10.1107/S056774087700648710.1107/S0567740877006487Search in Google Scholar

[29] H. Wolff and J. Eints: “Ultrarotutersuchungen der Assoziation von primaeren mit tertiaeren aliphatishen Amines”, Ber. Bunsenges. Phys. Chem., Vol. 70, (1966), pp. 728–733. Search in Google Scholar

[30] V.E. Borisenko, A.V. Moreva, I. Faizullina and A. Koll: “Dynamic, electrooptical and energetic nonequivalency of NH bonds in 1∶1 and 1∶2 complexes of aminopyridines with proton acceptors”, J. Mol. Struct. Vol. 560, (2001), pp. 121–136. http://dx.doi.org/10.1016/S0022-2860(00)00740-710.1016/S0022-2860(00)00740-7Search in Google Scholar

[31] J. Smets, L. Adomowicz and G. Maes: “Matrix-Isolation FT-IR Studies and Ab-Initio Calculations of Hydrogen-Bonded Complexes of Molecules Modeling Cytosine or Isocytosine Tautomers. 2. 4-Aminopyridine and 4-Aminopyrimidine Complexes with H2O in Ar Matrixes”, J. Phys. Chem., Vol. 99, (1995), pp. 6387–6400. http://dx.doi.org/10.1021/j100017a01810.1021/j100017a018Search in Google Scholar

[32] G. Keresztury, F. Billes, M. Kubinyi and T. Sundius: “A Density Functional, Infrared Linear Dichroism, and Normal Coordinate Study of Phenol and its Deuterated Derivatives: Revised Interpretation of the Vibrational Spectra”, J. Phys. Chem., Vol. 102A, (1998), pp. 1371–1380. Search in Google Scholar

Published Online: 2004-12-1
Published in Print: 2004-12-1

© 2004 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.2478/BF02482723/html
Scroll to top button