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A Formula for Popp’s Volume in Sub-Riemannian
Geometry

Abstract
For an equiregular sub-Riemannian manifold M, Popp’s vol-
ume is a smooth volume which is canonically associated with
the sub-Riemannian structure, and it is a natural generaliza-
tion of the Riemannian one. In this paper we prove a general
formula for Popp’s volume, written in terms of a frame adapted
to the sub-Riemannian distribution. As a first application of
this result, we prove an explicit formula for the canonical sub-
Laplacian, namely the one associated with Popp’s volume.
Finally, we discuss sub-Riemannian isometries, and we prove
that they preserve Popp’s volume. We also show that, under
some hypotheses on the action of the isometry group of M,
Popp’s volume is essentially the unique volume with such a
property.
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1. IntroductionThe problem of defining a canonical volume on a sub-Riemannian manifold was first pointed out by Brockett in hisseminal paper [10], motivated by the construction of a Laplace operator on a 3D sub-Riemannian manifold canonicallyassociated with the metric structure, analogous to the Laplace-Beltrami operator on a Riemannian manifold. Recently,Montgomery addressed this problem in the general case (see [13, Chapter 10]).Even on a Riemannian manifold, the Laplacian (defined as the divergence of the gradient) is a second order differentialoperator whose first order term depends on the choice of the volume on the manifold, which is required to define thedivergence. Naively, in the Riemannian case, the choice of a canonical volume is determined by the metric, by requiringthat the volume of a orthonormal parallelotope (i.e. whose edges are an orthonormal frame in the tangent space) is 1.From a geometrical viewpoint, sub-Riemannian geometry is a natural generalization of Riemannian geometry undernon-holonomic constraints. Formally speaking, a sub-Riemannian manifold is a smooth manifold M endowed with abracket-generating distribution D ⊂ TM , with k = rank D < n = dimM , and a smooth fibre-wise scalar product on D .From this structure, one derives a distance on M - the so-called Carnot-Caratheodory metric - as the infimum of thelength of horizontal curves on M , i.e. the curves that are almost everywhere tangent to the distribution.Nevertheless, sub-Riemannian geometry enjoys major differences with respect to the Riemannian case. For instance, aconstruction analogue to the one described above for the Riemannian volume is not possible. Indeed the inner productis defined only on a subspace of the tangent space, and there is no canonical way to extend it on the whole tangentspace.
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A Formula for Popp’s Volume in Sub-Riemannian Geometry

Popp’s volume is a generalization of the Riemannian volume in sub-Riemannian setting. It was first defined by OctavianPopp but introduced only in [13] (see also [3]). Such a volume is smooth only for an equiregular sub-Riemannian manifold,i.e. when the dimensions of the higher order distributions D 1 := D , D i+1 := D i + [D i, D ], for every i ≥ 1, do not dependon the point (for precise definitions, see Sec. 2).Under the equiregularity hypothesis, the bracket-generating condition guarantees that there exists a minimal m ∈ N,called the step of the structure, such that D m = TM .Then, for each q ∈ M , it is well defined the graded vector space:
grq(D ) := m⊕

i=1 D
i
q/D i−1

q , where D 0
q = 0. (1)

The vector space grq(D ), which can be endowed with a natural sub-Riemannian structure, is called the nilpotentization ofthe structure at the point q, and plays a role analogous to the Euclidean tangent space in Riemannian geometry. Popp’svolume is defined by inducing a canonical inner product on grq(D ) via the Lie brackets, and then using a non-canonicalisomorphism between grq(D ) and TqM to define an inner product on the whole TqM . Interestingly, even though thisconstruction depends on the choice of some complement to the distribution, the associated volume form (i.e. Popp’svolume) is independent on this choice.It is worth recalling that on a sub-Riemannian manifold, which is a metric space, the Haussdorff volume and the sphericalHausdorff volume, respectively HQ and SQ , are canonically defined.1 The relation between Popp’s volume and SQ hasbeen studied in [2], where the authors show how the Radon-Nikodym derivative is related with the nilpotentizationof the structure. In particular they prove that the Radon-Nikodym derivative could also be non smooth (see also[6, 8]). Remember that the Hausdorff and spherical Hausdorff volumes are both proportional to the Riemannian one on aRiemannian manifold. The relation between Hausdorff measures for non-horizontal curves and different notions of lengthin sub-Riemannian geometry is also investigated in [11].On a contact sub-Riemannian manifold, Popp’s volume coincides with the Riemannian volume obtained by “promoting”the Reeb vector field to an orthonormal complement to the distribution. In the general case, unfortunately, the definitionis more involved. To the authors’ best knowledge, explicit formulæ for Popp’s volume appeared, for some specific cases,only in [2, 6, 8].The goal of this paper is to prove a general formula for Popp’s volume, in terms of any adapted frame of the tangentbundle. In order to present the main results here, we briefly introduce some concepts which we will elaborate in detailsin the subsequent sections. Thus, we say that a local frame X1, . . . , Xn is adapted if X1, . . . , Xki is a local frame for D i,where ki := dim D i, and X1, . . . , Xk are orthonormal. Even though it is not needed right now, it is useful to define thefunctions clij ∈ C∞(M) by
[Xi, Xj ] = n∑

l=1 c
l
ijXl . (2)

With a standard abuse of notation we call them structure constants. For j = 2, . . . , m we define the adapted structure
constants bli1 ... ij ∈ C∞(M) as follows:

[Xi1 , [Xi2 , . . . , [Xij−1 , Xij ]]] = kj∑
l=kj−1+1b

l
i1i2... ijXl mod D j−1 , (3)

where 1 ≤ i1, . . . , ij ≤ k . These are a generalization of the clij , with an important difference: the structure constants ofEq. (2) are obtained by considering the Lie bracket of all the fields of the local frame, namely 1 ≤ i, j, l ≤ n. On the
1 Recall that the Hausdorff dimension of a sub-Riemannian manifold M is given by the formula Q = ∑m

i=1 ini, where
ni := dim D iq/D i−1

q . In particular the Hausdorff dimension is always bigger than the topological dimension.
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other hand, the adapted structure constants of Eq. (3) are obtained by taking the iterated Lie brackets of the first kelements of the adapted frame only (i.e. the local orthonormal frame for D ), and considering the appropriate equivalenceclass. For j = 2, the adapted structure constants can be directly compared to the standard ones. Namely blij = clij whenboth are defined, that is for 1 ≤ i, j ≤ k , and l ≥ k + 1.Then, we define the kj − kj−1 dimensional square matrix Bj as follows:
[
Bj
]hl = k∑

i1,i2,...,ij=1b
h
i1i2 ...ijbli1i2 ...ij , j = 1, . . . , m , (4)

with the understanding that B1 is the k × k identity matrix. It turns out that each Bj is positive definite.
Theorem 1.
Let X1, . . . , Xn be a local adapted frame, and let ν1, . . . , νn be the dual frame. Then Popp’s volume P satisfies

P = 1√∏
j detBj ν1 ∧ . . . ∧ νn , (5)

where Bj is defined by (4) in terms of the adapted structure constants (3).
To clarify the geometric meaning of Eq. (5), let us consider more closely the case m = 2. If D is a step 2 distribution,we can build a local adapted frame {X1, . . . , Xk , Xk+1, . . . , Xn} by completing any local orthonormal frame {X1, . . . , Xk}of the distribution to a local frame of the whole tangent bundle. Even though it may not be evident, it turns out that
B−12 (q) is the Gram matrix of the vectors Xk+1, . . . , Xn, seen as elements of TqM/Dq. The latter has a natural structureof inner product space, induced by the surjective linear map [ , ] : Dq ⊗ Dq → TqM/Dq (see Lemma 15). Therefore, thefunction appearing at the beginning of Eq. (5) is the volume of the parallelotope whose edges are X1, . . . , Xn, seen aselements of the orthogonal direct sum grq(D ) = Dq ⊕ TqM/Dq.With a volume form at disposal, one can naturally define the associated divergence operator, which acts on vector fields.Moreover, the sub-Riemannian structure allows to define the horizontal gradient of a smooth function. Then, we definea canonical sub-Laplace operator as ∆ := div ◦ ∇, which generalizes the Laplace-Beltrami operator. This is a secondorder differential operator, which has been studied in [3, 5]. As a corollary to Theorem 1, we obtain a formula for thesub-Laplacian ∆ in terms of any local adapted frame.
Corollary 2.
Let X1, . . . , Xn be a local adapted frame. Let ∆ be the canonical sub-Laplacian. Then

∆ = k∑
i=1 X

2
i −

12 m∑
j=1 Tr(B−1

j Xi(Bj )) + n∑
l=1 c

l
il

Xi , (6)
where clij are the structure constants (2), and Bj is defined by (4) in terms of the adapted structure constants (3).
Remark 3.If M is a Carnot group (i.e. a connected, simply connected nilpotent group, whose Lie algebra is graded, and whose sub-Riemannian structure is left invariant) the Bj are constant. Moreover, ∀i ∑n

l=1 clil = 0, as a consequence of the gradedstructure. Then, in this case, the sub-Laplacian is a simple “sum of squares” ∆ = ∑k
i=1 X 2

i . This is a manifestation ofthe fact that Carnot groups are to sub-Riemannian geometry as Euclidean spaces are to Riemannian geometry. Indeed,on Rn, the Laplace-Beltrami operator is a simple sum of squares.More in general, in [3], the authors prove that for left-invariant structures on unimodular Lie groups the sub-Laplacianis a sum of squares.
44



A Formula for Popp’s Volume in Sub-Riemannian Geometry

In the last part of the paper we discuss the conditions under which a local isometry preserves Popp’s volume. In theRiemannian setting, an isometry is a diffeomorphism such that its differential is an isometry for the Riemannian metric.The concept is easily generalized to the sub-Riemannian case.
Definition 4.A (local) diffeomorphism φ : M → M is a (local) isometry if its differential φ∗ : TM → TM preserves the sub-Riemannianstructure (D , 〈·, ·〉), namely

i) φ∗(Dq) = Dφ(q) for all q ∈ M ,
ii) 〈φ∗X,φ∗Y 〉φ(q) = 〈X, Y 〉q for all q ∈ M , X, Y ∈ Dq .

Remark 5.Condition i), which is trivial in the Riemannian case, is necessary to define isometries in the sub-Riemannian case.Actually, it also implies that all the higher order distributions are preserved by φ∗, i.e. φ∗(D iq) = D iφ(q), for 1 ≤ i ≤ m.
Definition 6.Let M be a manifold equipped with a volume form µ ∈ Ωn(M). We say that a (local) diffeomorphism φ : M → M is a
(local) volume preserving transformation if φ∗µ = µ.
In the Riemannian case, local isometries are also volume preserving transformations for the Riemannian volume. Then,it is natural to ask whether this is true also in the sub-Riemannian setting, for some choice of the volume. The nextproposition states that the answer is positive if we choose Popp’s volume.
Proposition 7.
Sub-Riemannian (local) isometries are volume preserving transformations for Popp’s volume.

Proposition 7 may be false for volumes different than Popp’s one. We have the following.
Proposition 8.
Let Iso(M) be the group of isometries of the sub-Riemannian manifold M . If Iso(M) acts transitively on M , then Popp’s
volume is the unique volume (up to multiplication by scalar constant) such that Proposition 7 holds true.

Definition 9.Let M be a Lie group. A sub-Riemannian structure (M, D , 〈·, ·〉) is left invariant if ∀g ∈ M , the left action Lg : M → Mis an isometry.
As a trivial consequence of Proposition 7 we recover a well-known result (see again [13]).
Corollary 10.
Let (M, D , 〈·, ·〉) be a left-invariant sub-Riemannian structure. Then Popp’s volume is left invariant, i.e. L∗gP = P for
every g ∈ M .

Propositions 7, 8 and Corollary 10 should shed some light about which is the “most natural” volume for sub-Riemannianmanifold.
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2. Sub-Riemannian geometryWe recall some basic definitions in sub-Riemannian geometry. For a more detailed introduction, see [1, 7, 13].
Definition 11.A sub-Riemannian manifold is a triple (M, D , 〈·, ·〉), where

(i) M is a connected orientable smooth manifold of dimension n ≥ 3;
(ii) D ⊂ TM is a smooth distribution of constant rank k < n;
(iii) 〈·, ·〉q is an inner product on the fibres Dq, smooth as a function of q.

Let Γ(D ) ⊂ Vec(M) be the C∞(M)-module of the smooth sections of D . Throughout this paper we assume that thesub-Riemannian manifold M satisfies the bracket-generating condition, i.e.
span{[X1, [X2, . . . , [Xj−1, Xj ]]](q) | Xi ∈ Γ(D ), j ∈ N} = TqM, ∀q ∈ M. (7)

In other words, the iterated Lie brackets of smooth sections of D span the whole tangent bundle TM . Condition (7) isalso called Hörmander condition, and bracket-generating distribution are also referred to as completely nonholonomicdistributions.An absolutely continuous curve γ : [0, T ]→ M is said to be horizontal (or admissible) if
γ̇(t) ∈ Dγ(t) for a.e. t ∈ [0, T ].

Given an horizontal curve γ : [0, T ]→ M , the length of γ is
`(γ) = ∫ T

0 |γ̇(t)| dt. (8)
The distance induced by the sub-Riemannian structure on M is the function

d(q0, q1) = inf{`(γ) | γ(0) = q0, γ(T ) = q1, γ horizontal}. (9)
The connectedness of M and the bracket-generating condition guarantee the finiteness and the continuity of the sub-Riemannian distance with respect to the topology of M (Chow-Rashevsky Theorem, see, for instance, [4]). The function
d(·, ·) is called the Carnot-Caratheodory distance and gives to M the structure of metric space (see [7, 12]).Locally (i.e. on an open set U ⊂ M), there always exists a set of k smooth vector fields X1, . . . , Xk such that, ∀q ∈ U , itis an orthonormal basis of Dq. The set {X1, . . . , Xk} is called a local orthonormal frame for the sub-Riemannian structure.
Definition 12.Let D be a distribution. Its flag at q ∈ M is the sequence of vector spaces D 0

q ⊂ D 1
q ⊂ D 2

q ⊂ . . . ⊂ TqM defined by
D 0
q := {0}, D 1

q := Dq, D i+1
q := D iq + [D i, D ]q ,

where, with a standard abuse of notation, we understand that [D i, D ]q is the vector space generated by the iterated Liebrackets, up to length i, of local sections of the distribution, evaluated at q.
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Even though the rank of D is constant, the dimensions of the subspaces of the flag, i.e. the numbers ki(q) := dim(D iq)may depend on the point. Observe that the bracket-generating condition can be rewritten as follows
∀q ∈ M ∃ minimal m(q) ∈ N such that km(q) = dim TqM.

The number m(q) is called the step of the distribution at the point q. The vector G(q) := (k1(q), k2(q), . . . , km(q)) iscalled the growth vector of the distribution at q.
Definition 13.A distribution D is equiregular if the growth vector is constant, i.e. for each i = 1, 2, . . . , m, ki(q) = dim(D iq) does notdepend on q ∈ M . In this case the subspaces D iq are fibres of the higher order distributions D i ⊂ TM .
For equiregular distributions we will simply talk about growth vector and step of the distribution, without any referenceto the point q.Finally, we introduce the nilpotentization of the distribution at the point q, which is fundamental for the definition ofPopp’s volume.
Definition 14.Let D be an equiregular distribution of step m. The nilpotentization of D at the point q ∈ M is the graded vector space

grq(D ) = Dq ⊕ D 2
q /Dq ⊕ . . .⊕ D mq /D m−1

q .

The vector space grq(D ) can be endowed with a Lie algebra structure, which respects the grading. Then, there is aunique connected, simply connected group, Grq(D ), such that its Lie algebra is grq(D ). The global, left-invariant vectorfields obtained by the group action on any orthonormal basis of Dq ⊂ grq(D ) defines a sub-Riemannian structure onGrq(D ), which is called the nilpotent approximation of the sub-Riemannian structure at the point q.
3. Popp’s volumeIn this section we provide the definition of Popp’s volume, and we prove Theorem 1. Our presentation follows closelythe one that can be found in [13]. The definition rests on the following lemmas.
Lemma 15.
Let E be an inner product space, and let π : E → V be a surjective linear map. Then π induces an inner product on V
such that the length of v ∈ V is

|v |V = min{|e|E s.t. π(e) = v} . (10)
Proof. It is easy to check that Eq. (10) defines a norm on V . Moreover, since | · |E is induced by an inner product,i.e. it satisfies the parallelogram identity, it follows that | · |V satisfies the parallelogram identity too. Notice that thisis equivalent to consider the inner product on V defined by the linear isomorphism π : (kerπ)⊥ → V . Indeed the lengthof v ∈ V is the length of the shortest element e ∈ π−1(v ).
Lemma 16.
Let E be a vector space of dimension n with a flag of linear subspaces {0} = F 0 ⊂ F 1 ⊂ F 2 ⊂ . . . ⊂ Fm = E . Letgr(F ) = F 1 ⊕ F 2/F 1 ⊕ . . . ⊕ Fm/Fm−1 be the associated graded vector space. Then there is a canonical isomorphism
θ : ∧nE → ∧ngr(F ).
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Proof. We only give a sketch of the proof. For 0 ≤ i ≤ m, let ki := dimF i. Let X1, . . . , Xn be a adapted basisfor E , i.e. X1, . . . , Xki is a basis for F i. We define the linear map θ̂ : E → gr(F ) which, for 0 ≤ j ≤ m − 1, takes
Xkj+1, . . . , Xkj+1 to the corresponding equivalence class in F j+1/F j . This map is indeed a non-canonical isomorphism,which depends on the choice of the adapted basis. In turn, θ̂ induces a map θ : ∧nE → ∧ngr(F ), which sends X1∧. . .∧Xnto θ̂(X1) ∧ . . . ∧ θ̂(Xn). The proof that θ does not depend on the choice of the adapted basis is “dual” to [13, Lemma10.4].
The idea behind Popp’s volume is to define an inner product on each D iq/D i−1

q which, in turn, induces an inner producton the orthogonal direct sum grq(D ). The latter has a natural volume form, which is the canonical volume of an innerproduct space obtained by wedging the elements an orthonormal dual basis. Then, we employ Lemma 16 to define anelement of (∧nTqM)∗ ' ∧nT ∗qM , which is Popp’s volume form computed at q.Fix q ∈ M . Then, let v, w ∈ Dq, and let V ,W be any horizontal extensions of v, w . Namely, V ,W ∈ Γ(D ) and V (q) = v ,
W (q) = w . The linear map π : Dq ⊗ Dq → D 2

q /Dq

π(v ⊗ w) := [V ,W ]q mod Dq , (11)
is well defined, and does not depend on the choice the horizontal extensions. Indeed let Ṽ and W̃ be two differenthorizontal extensions of v and w respectively. Then, in terms of a local frame X1, . . . , Xk of D

Ṽ = V + k∑
i=1 fiXi , W̃ = W + k∑

i=1 giXi , (12)
where, for 1 ≤ i ≤ k , fi, gi ∈ C∞(M) and fi(q) = gi(q) = 0. Therefore

[Ṽ , W̃ ] = [V ,W ] + k∑
i=1 (V (gi)−W (fi))Xi + k∑

i,j=1 figj [Xi, Xj ] . (13)
Thus, evaluating at q, [Ṽ , W̃ ]q = [V ,W ]q mod Dq, as claimed. Similarly, let 1 ≤ i ≤ m. The linear maps πi : ⊗iDq →
D iq/D i−1

q

πi(v1 ⊗ · · · ⊗ vi) = [V1, [V2, . . . , [Vi−1, Vi]]]q mod D i−1
q , (14)

are well defined and do not depend on the choice of the horizontal extensions V1, . . . , Vi of v1, . . . , vi.By the bracket-generating condition, πi are surjective and, by Lemma 15, they induce an inner product space structureon D iq/D i−1
q . Therefore, the nilpotentization of the distribution at q, namely

grq(D ) = Dq ⊕ D 2
q /Dq ⊕ . . .⊕ D mq /D m−1

q , (15)
is an inner product space, as the orthogonal direct sum of a finite number of inner product spaces. As such, it is endowedwith a canonical volume (defined up to a sign) µq ∈ ∧ngrq(D )∗, which is the volume form obtained by wedging theelements of an orthonormal dual basis.Finally, Popp’s volume (computed at the point q) is obtained by transporting the volume of grq(D ) to TqM through themap θq : ∧nTqM → ∧ngrq(D ) defined in Lemma 16. Namely

Pq = θ∗q(µq) = µq ◦ θq , (16)
where θ∗q denotes the dual map and we employ the canonical identification (∧nTqM)∗ ' ∧nT ∗qM . Eq. (16) is definedonly in the domain of the chosen local frame. Since M is orientable, with a standard argument, these n-forms can beglued together to obtain Popp’s volume P ∈ Ωn(M). The smoothness of P follows directly from Theorem 1.

48



A Formula for Popp’s Volume in Sub-Riemannian Geometry

Remark 17.The definition of Popp’s volume can be restated as follows. Let (M, D ) be an oriented sub-Riemannian manifold. Popp’svolume is the unique volume P such that, for all q ∈ M , the following diagram is commutative:
(M, D ) P−−−−−→ (∧nTqM)∗
grqy yθ∗q
grq(D ) −−−−−→

µ
(∧ngrq(D ))∗

where µ associates the inner product space grq(D ) with its canonical volume µq, and θ∗q is the dual of the map definedin Lemma 16.
3.1. Proof of Theorem 1We are now ready to prove Theorem 1. For convenience, we first prove it for a distribution of step m = 2. Then, wediscuss the general case. In the following subsections, everything is understood to be computed at a fixed point q ∈ M .Namely, by gr(D ) we mean the nilpotentization of D at the point q, and by D i we mean the fibre D iq of the appropriatehigher order distribution.
3.1.1. Step 2 distributionIf D is a step 2 distribution, then D 2 = TM . The growth vector is G = (k, n). We choose n− k independent vector fields
{Yl}nl=k+1 such that X1, . . . , Xk , Yk+1, . . . , Yn is a local adapted frame for TM . Then

[Xi, Xj ] = n∑
l=k+1b

l
ijYl mod D . (17)

For each l = k + 1, . . . , n, we can think to blij as the components of an Euclidean vector in Rk2 , which we denoteby the symbol bl. According to the general construction of Popp’s volume, we need first to compute the inner producton the orthogonal direct sum gr(D ) = D ⊕ D 2/D . By Lemma 15, the norm on D 2/D is induced by the linear map
π : ⊗2D → D 2/D

π(Xi ⊗ Xj ) = [Xi, Xj ] mod D . (18)
The vector space ⊗2D inherits an inner product from the one on D , namely ∀X, Y , Z ,W ∈ D , 〈X ⊗ Y , Z ⊗ W 〉 =
〈X, Z 〉〈Y ,W 〉. π is surjective, then we identify the range D 2/D with kerπ⊥ ⊂ ⊗2D , and define an inner product on
D 2/D by this identification. In order to compute explicitly the norm on D 2/D (and then, by polarization, the innerproduct), let Y ∈ D 2/D . Then

|Y |D 2/D = min{|Z |⊗2D s.t. π(Z ) = Y } . (19)
Let Y = ∑n

l=k+1 clYl and Z = ∑k
i,j=1 aijXi ⊗ Xj ∈ ⊗2D . We can think to aij as the components of a vector a ∈ Rk2 .Then, Eq. (19) writes
|Y |D 2/D = min{|a| s.t. a · bl = cl, l = k + 1, . . . , n} , (20)

where |a| is the Euclidean norm of a, and the dot denotes the Euclidean inner product. Indeed, |Y |D 2/D is the Euclideandistance of the origin from the affine subspace of Rk2 defined by the equations a · bl = cl for l = k + 1, . . . , n. In orderto find an explicit expression for |Y |2D 2/D in terms of the bl, we employ the Lagrange multipliers technique. Then, welook for extremals of
L(a, bk+1, . . . , bn, λk+1, . . . , λn) = |a|2 − 2 n∑

l=k+1 λl(a · bl − cl) . (21)
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We obtain the following system 
n∑

l=k+1 λl · b
l − a = 0,

n∑
l=k+1 λlb

l · br = cr , r = k + 1, . . . , n. (22)
Let us define the n− k square matrix B, with components Bhl = bh · bl. B is a Gram matrix, which is positive definiteiff the bl are n− k linearly independent vectors. These vectors are exactly the rows of the representative matrix of thelinear map π : ⊗2D → D 2/D , which has rank n − k . Therefore B is symmetric and positive definite, hence invertible.It is now easy to write the solution of system (22) by employing the matrix B−1, which has components B−1

hl . Indeed astraightforward computation leads to
|csYs|2D 2/D = chB−1

hl cl . (23)By polarization, the inner product on D 2/D is defined, in the basis Yl, by
〈Yl, Yh〉D 2/D = B−1

lh . (24)
Observe that B−1 is the Gram matrix of the vectors Yk+1, . . . , Yn seen as elements of D 2/D . Then, by the definition ofPopp’s volume, if ν1, . . . , νk , µk+1, . . . , µn is the dual basis associated with X1, . . . , Xk , Yk+1, . . . , Yn, the following formulaholds true

P = 1√detB ν1 ∧ · · · ∧ νk ∧ µk+1 ∧ · · · ∧ µn . (25)
3.1.2. General caseIn the general case, the procedure above can be carried out with no difficulty. Let X1, . . . , Xn be a local adapted framefor the flag D 0 ⊂ D ⊂ D 2 ⊂ · · · ⊂ D m. As usual ki = dim(D i). For j = 2, . . . , m we define the adapted structureconstants bli1 ... ij ∈ C∞(M) by

[Xi1 , [Xi2 , . . . , [Xij−1 , Xij ]]] = kj∑
l=kj−1+1b

l
i1i2... ijXl mod D j−1 , (26)

where 1 ≤ i1, . . . , ij ≤ k . Again, bli1...ij can be seen as the components of a vector bl ∈ Rk j .Recall that for each j we defined the surjective linear map πj : ⊗jD → D j /D j−1
πj (Xi1 ⊗ Xi2 ⊗ · · · ⊗ Xij ) = [Xi1 , [Xi2 , . . . , [Xij−1 , Xij ]]] mod D j−1 . (27)

Then, we compute the norm of an element of D j /D j−1 exactly as in the previous case. It is convenient to define, for each1 ≤ j ≤ m, the kj − kj−1 dimensional square matrix Bj , of components
[
Bj
]hl = k∑

i1,i2 ,...,ij=1b
h
i1i2...ijbli1i2...ij . (28)

with the understanding that B1 is the k×k identity matrix. Each one of these matrices is symmetric and positive definite,hence invertible, due to the surjectivity of πj . The same computation of the previous case, applied to each D j /D j−1 showsthat the matrices B−1
j are precisely the Gram matrices of the vectors Xkj−1+1, . . . , Xkj ∈ D j /D j−1, in other words

〈Xkj−1+l, Xkj−1+h〉D j /D j−1 = B−1
lh . (29)

Therefore, if ν1, . . . , νn is the dual frame associated with X1, . . . , Xn, Popp’s volume is
P = 1√∏m

j=1 detBj ν1 ∧ . . . ∧ νn . (30)
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3.2. ExamplesIn this section we compute Popp’s volume for some specific equiregular sub-Riemannian structures. We also discuss,through an example, the non-equiregular case.
3.2.1. Contact manifoldsContact manifolds are a well-known class of sub-Riemannian structures. We recall the basic definition first, then wecompute Popp’s volume in terms of a canonical operator associated with a contact structure.
Definition 18.Let ω ∈ Ω1(M) be a one-form on M . Let D be the n − 1 dimensional distribution D := kerω. We say that ω is a
contact form if dω|D is non degenerate. In this case, D is a called contact distribution. A sub-Riemannian structure(M, D , 〈·, ·〉), where D is a contact distribution, is is called contact sub-Riemannian manifold.
Notice that the non-degeneracy assumption implies that the dimension of M is odd. Observe that any contact manifoldsatisfies the bracket-generating condition, is equiregular, has step 2, and its growth vector is G = (n− 1, n).To any contact form ω we can associate its Reeb vector field, which is the unique vector field X0 satisfying conditions
ω(X0) = 1 and dω(X0, ·) = 0. Notice that, given a local orthonormal frame X1, . . . , Xk for the distribution, then
X1, . . . , Xk , X0 is a local adapted frame, since X0 is transversal to D .The contact form ω induces a linear bundle map (i.e. a fibre-wise linear map) J : D → D , defined by 〈JX, Y 〉 = dω(X, Y ),
∀X, Y ∈ D . Observe that the restriction Jq of J to the fibres of D is a linear skew-symmetric operator on the innerproduct space (Dq, 〈·, ·〉q). Hence its Hilbert-Schmidt norm |Jq| is well defined by the formula |Jq|2 =∑k

i,j=1〈Xi, JXj〉2.
Proposition 19.
Let M be a contact sub-Riemannian manifold and J : D → D as above. Let ν1, . . . , νk , ν0 be the dual frame associated
with the local adapted frame X1, . . . , Xk , X0, where X0 is the Reeb vector field. Then

P = 1
|Jq|

ν1 ∧ . . . ∧ νk ∧ ν0 , (31)
where |Jq| is the Hilbert-Schmidt norm of Jq.

Proof. Let X1, . . . , Xk , X0 be a local adapted frame, where X0 is the Reeb vector field associated with the contactform. Then, for 1 ≤ i, j ≤ k , the structure constants satisfy
[Xi, Xj ] = k∑

l=1 c
l
ijXl + c0

ijX0 , (32)
[Xi, X0] = k∑

l=1 c
l
i0Xl . (33)

By Eq. (5), P = √gν1 ∧ . . . ∧ νk ∧ ν0 where g = 1/∑k
i,j=1(c0

ij )2. Then the statement follows from the identity
|J|2 = k∑

i,j=1〈Xi, JXj〉
2 = k∑

i,j=1dω(Xi, Xj )2 = k∑
i,j=1ω([Xi, Xj ])2 = k∑

i,j=1(c0
ij )2 . (34)

Observe that, in the last equality of Eq. (34), we employed Cartan formula for the differential of a one-form, and the factthat ω(Xi) = 0.
Eq. (31) can be expressed in terms of the eigenvalues of J . See also [2, Remark 30], where the authors exhibit thisformula for the case G = (4, 5).
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Remark 20.Let f ∈ C∞(M) be a smooth, non-vanishing function. Then ω and ω′ := fω define the same contact distribution D .However dω′ 6= fdω and, in general, the associated Reeb vector field is different. On the other hand, as a consequenceof the identity dω′|D = fdω|D , it follows that J ′ = fJ . Therefore, it is convenient to choose a “normalized” contact form,which is uniquely specified (up to a sign) by the condition |Jq|2 = 1, ∀q ∈ M . Then, in terms of the Reeb vector fieldassociated with the normalized contact form, P = ν1 ∧ . . . ∧ νk ∧ ν0.
3.2.2. Carnot groups of step 2A Carnot group G of step 2 is a left-invariant sub-Riemannian structure on a nilpotent, connected, simply connectedLie group whose Lie algebra g admits a stratification g = V1 ⊕ V2 with [V1, V1] = V2 and [V1, V2] = [V2, V2] = {0}.The sub-Riemannian structure is defined by left translation of the subspace V1, where we choose an orthonormal basis
X1, . . . , Xk . It is possible to choose a basis Yk+1, . . . , Yn of V2 such that

[Xi, Xj ] = n∑
h=k+1b

h
ijYh, [Xi, Yh] = [Yh, Yl] = 0.

Using the standard exponential coordinates (i.e. the identification of the Lie group and its Lie algebra via the exponentialmap) the explicit expression for the associated left-invariant vector fields in Rn = {(x, y) | x ∈ Rk , y ∈ Rn−k} is
Xi = ∂xi + 12 ∑

j,h

bhijxj∂yh , i = 1, . . . , k , (35)
Yh = ∂yh , h = k + 1, . . . , n . (36)

In [6], the authors employed the skew-symmetric matrices Lh, k + 1 ≤ h ≤ n, of components [Lh]ij = bhij in order toinvestigate the nilpotent approximation of a step 2 sub-Riemannian structure. In terms of these matrices,
Bhl = (Lh, Ll) , (37)

where (M,N) := Tr(MTN) is the Hilbert-Schmidt inner product on GL(k,R). If the L matrices are orthonormal, Eq. (5)gives
P = dx1 ∧ . . . ∧ dxk ∧ dyk+1 ∧ . . . ∧ dyn . (38)

The last formula is (up to a constant factor) the definition of Popp’s volume employed in [6, Definition 4] and [8], givenin terms of a global adapted frame.
3.2.3. Non-equiregular caseThe basic example of a bracket-generating, non-equiregular sub-Riemannian structure is the so-called Martinet distri-
bution. This is the distribution on R3 defined by the kernel of the one-form θ := dz−y2dx . A global frame for D , whichwe declare orthonormal, is

X = ∂x + y2∂z , Y = ∂y . (39)
Let Z := ∂z . Then [X, Y ] = −2yZ and [Y , [X, Y ]] = 2Z . Observe that X, Y , Z is a global (adapted) frame for TM ,therefore Martinet distribution is bracket-generating. However, its growth vector is

G(x, y, z) = {(2, 3) if y 6= 0 ,(2, 2, 3) if y = 0 , (40)
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and the distribution is not equiregular on the hyperplane y = 0. Nevertheless, if we restrict to the connected componentsof {y 6= 0}, we obtain a step 2 equiregular sub-Riemannian manifold. Here, Theorem 1 gives the following expression:
P = 1

|y|dx ∧ dy ∧ dz . (41)
Eq. (41) shows that singularities arise precisely on the hypersurface where the equiregularity hypotesis fails. In [9],the authors investigate the properties of the sub-Laplacian associated with this volume in the Martinet structure. Theyshow that the sub-Laplacian is essentially self-adjoint in each connected component of {y 6= 0}, hence the hyperplane
{y = 0} acts as a barrier for the heat propagation.
4. Sub-LaplacianIn this section we define the canonical sub-Laplacian associated with a generic volume form and we prove Corollary 2,namely an explicit formula for the sub-Laplacian associated with Popp’s volume.On a Riemannian manifold, the Laplace-Beltrami operator is defined as the divergence of the gradient. This definitioncan be easily generalized to the sub-Riemannian setting.
Definition 21.Let f ∈ C∞(M). The horizontal gradient of f is the unique horizontal vector field ∇f such that

〈∇f , X〉 = X (f ) , ∀X ∈ Γ(D ) . (42)
It follows from the definition that, in terms of a local frame X1, . . . , Xk for D

∇f = k∑
i=1 Xi(f )Xi . (43)

Definition 22.Let µ ∈ Ωn(M) be a positive volume form, and X ∈ Vec(M). The µ-divergence of X is the smooth function divµX definedby
LXµ = divµXµ . (44)

where LX is the Lie derivative in the direction X .
Notice that the definition of divergence does not depend on the orientation of M , namely the sign of µ. The divergencemeasures the rate at which the volume of a region changes under the integral flow of a field. Indeed, for any compactΩ ⊂ M and t sufficiently small, let etX : Ω→ M be the flow of X ∈ Vec(M), then

d
dt

∣∣∣∣
t=0
∫
etX (Ω) µ = − ∫Ω divµXµ . (45)

The next proposition is sometimes employed as an alternative definition of divergence. Let C∞0 (M) be the space ofsmooth functions with compact support.
Proposition 23.
For any f ∈ C∞0 (M) and X ∈ Vec(M)

∫
M
fdivµXµ = −∫

M
X (f )µ . (46)
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Proof. The proof is an easy consequence of the definition of µ-divergence.
The next lemma gives the relation between divergences associated with different volumes.
Lemma 24.
Let µ, µ′ ∈ Ωn(M) be volume forms. Let f ∈ C∞(M), f 6= 0 such that µ′ = fµ. Then, for any X ∈ Vec(M)

divµ′X = divµX + X (log f ) . (47)
Proof. It follows from the Leibniz rule LX (fµ) = (Xf )µ + fLXµ = (X (log f ) + divµX )fµ.
When no confusion may arise, we write “div”, without any reference to the volume form µ. In the following, we fix thereference volume to be Popp’s one. Lemma 24 can be used to generalize the results to the case of a generic µ-divergence.With a divergence and a gradient at our disposal, we are ready to define the sub-Laplacian associated with the volumeform µ.
Definition 25.Let µ ∈ Ωn(M), f ∈ C∞(M). The sub-Laplacian associated with µ is the second order differential operator

∆f := div (∇f ) , (48)
This definition reduces to the Laplace-Beltrami operator when µ is the Riemannian volume. As a consequence of Eq. (43)and the Leibniz rule for the divergence div(fX ) = Xf+ f div(X ), we can find the expression of the sub-Laplacian in termsof any local frame X1, . . . , Xk :

div (∇f ) = k∑
i=1 div (Xi(f )Xi) = k∑

i=1 Xi(Xi(f )) + div(Xi)Xi(f ) . (49)
Then ∆ = k∑

i=1 X
2
i + div(Xi)Xi . (50)

Remark 26.Observe that the second order term of ∆, namely the “sum of squares” in Eq. (50), does not depend on the choice ofthe volume. Indeed, only the first order terms depend on it through the divergence operator, which changes accordingto Lemma 28 upon a change of volume.
Remark 27.If we apply Proposition 23 to the horizontal gradient ∇g, we obtain

∫
M
f∆gµ = −∫

M
〈∇f ,∇g〉µ , ∀f , g ∈ C∞0 (M) . (51)

Then ∆ is symmetric and negative on C∞0 (M). It can be proved that it is also essentially self-adjoint (see [14]).
Now we prove a useful formula for the divergence associated with Popp’s volume. Analogous formulae for µ-divergencesare easily obtained by an application of Lemma 24.
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Lemma 28.
Let X1, . . . , Xn be a local adapted frame. Let div be the divergence associated with Popp’s volume. Then, for i = 1, . . . , n

divXi = −12 m∑
j=1 Tr(B−1

j Xi(Bj )) + n∑
l=1 c

l
il

 . (52)
Proof. Let ν ∈ Ω1(M), and X, Y ∈ Vec(M). The Lie derivative obeys Leibniz rule:

LX (ν(Y )) = (LXν)(Y ) + ν(LXY ) . (53)
Then, if ν1, . . . , νn is the dual frame associated with X1, . . . , Xn

LXiν j = − n∑
l=1 c

j
ilνl , (54)

which is the “dual formulation” of Eq. (2). By Theorem 1, Popp’s volume is
P = 1√∏

j detBj ν1 ∧ . . . ∧ νn . (55)
Then, for i = 1, . . . , n,

LXiP =√∏
j

detBj Xi
 1√∏

j detBj
P + 1√∏

j detBj (LXiν1 ∧ . . . ∧ νn + . . .+ ν1 ∧ . . . ∧ LXiνn) . (56)
Eq. (52) now follows from the definition of divergence, Eq. (54) and Eq. (56).
Finally, Corollary 2 is a straightforward consequence of Lemma 28 and Eq. (50).
5. Volume preserving transformationsThis section is devoted to the proof of Propositions 7 and 8.
5.1. Proof of Proposition 7Let φ ∈ Iso(M) be a (local) isometry, and 1 ≤ i ≤ m. The differential φ∗ induces a linear map

φ̃∗ : ⊗iDq → ⊗iDφ(q) . (57)
Moreover φ∗ preserves the flag D ⊂ . . . ⊂ D m. Therefore, it induces a linear map

φ̂∗ : D iq/D i−1
q → D iφ(q)/D i−1

φ(q) . (58)
The key to the proof of Proposition 7 is the following lemma.
Lemma 29.
φ̃∗ and φ̂∗ are isometries of inner product spaces.
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Proof. The proof for φ̃∗ is trivial. The proof for φ̂∗ is as follows. Remember that the inner product on D i/D i−1 isinduced by the surjective maps πi : ⊗iD → D i/D i−1 defined by Eq. (14). Namely, let Y ∈ D iq/D i−1
q . Then

|Y |D iq/D i−1q
= min{|Z |⊗Dq s.t. πi(Z ) = Y } . (59)

As a consequence of the properties of the Lie brackets, πi ◦ φ̃∗ = φ̂∗ ◦ πi. Therefore
|Y |D iq/D i−1q

= min{|φ̃∗Z |⊗Dφ(q) s.t. πi(φ̃∗Z ) = φ̂∗Y } = |φ̂∗Y |D iφ(q)/D i−1
φ(q) . (60)

By polarization, φ̂∗ is an isometry.
Since grq(D ) = ⊕mi=1D iq/D i−1

q is an orthogonal direct sum, φ̂∗ : grq(D ) → grφ(q)(D ) is also an isometry of inner productspaces.Finally, Popp’s volume is the canonical volume of grq(D ) when the latter is identified with TqM through any choice of alocal adapted frame. Since φ∗ is equal to φ̂∗ under such an identification, and the latter is an isometry of inner productspaces, the result follows.
5.2. Proof of Proposition 8Let µ be a volume form such that φ∗µ = µ for any isometry φ ∈ Iso(M). There exists f ∈ C∞(M), f 6= 0 such that
P = fµ. It follows that, for any φ ∈ Iso(M)

fµ = P = φ∗P = (f ◦ φ)φ∗µ = (f ◦ φ) µ , (61)
where we used the Iso(M)-invariance of Popp’s volume. Then also f is Iso(M)-invariant, namely φ∗f = f for any
φ ∈ Iso(M). By hypothesis, the action of Iso(M) is transitive, then f is constant.
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