Skip to content
Open Access Published by De Gruyter Open Access May 28, 2013

Spectral Calculus and Lipschitz Extension for Barycentric Metric Spaces

  • Manor Mendel EMAIL logo and Assaf Naor

Abstract

The metric Markov cotype of barycentric metric spaces is computed, yielding the first class of metric spaces that are not Banach spaces for which this bi-Lipschitz invariant is understood. It is shown that this leads to new nonlinear spectral calculus inequalities, as well as a unified framework for Lipschitz extension, including new Lipschitz extension results for CAT (0) targets. An example that elucidates the relation between metric Markov cotype and Rademacher cotype is analyzed, showing that a classical Lipschitz extension theorem of Johnson, Lindenstrauss and Benyamini is asymptotically sharp.

References

[1] A. Andoni, A. Naor, and O. Neiman. Snowflake universality of Wasserstein spaces. Preprint, (2010).Search in Google Scholar

[2] A. Andoni, A. Naor, and O. Neiman. On isomorphic dimension reduction in `1. Preprint, (2011).Search in Google Scholar

[3] K. Ball. Markov chains, Riesz transforms and Lipschitz maps. Geom. Funct. Anal., 2(2):137-172, (1992).10.1007/BF01896971Search in Google Scholar

[4] K. Ball. The Ribe programme. Séminaire Bourbaki, exposé 1047, (2012).Search in Google Scholar

[5] K. Ball, E. A. Carlen, and E. H. Lieb. Sharp uniform convexity and smoothness inequalities for trace norms. Invent. Math., 115(3):463-482, (1994).10.1007/BF01231769Search in Google Scholar

[6] W. Ballmann. Lectures on spaces of nonpositive curvature, volume 25 of DMV Seminar. Birkhäuser Verlag, Basel, 1995. With an appendix by Misha Brin.10.1007/978-3-0348-9240-7Search in Google Scholar

[7] Y. Benyamini and J. Lindenstrauss. Geometric nonlinear functional analysis. Vol. 1, volume 48 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, (2000).Search in Google Scholar

[8] J. Bourgain. A counterexample to a complementation problem. Compositio Math., 43(1):133-144, (1981).Search in Google Scholar

[9] M. R. Bridson and A. Haefliger. Metric spaces of non-positive curvature, volume 319 of Grundlehren der MathematischenWissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, (1999).10.1007/978-3-662-12494-9_18Search in Google Scholar

[10] B. Brinkman, A. Karagiozova, and J. R. Lee. Vertex cuts, random walks, and dimension reduction in series-parallel graphs. In STOC’07-Proceedings of the 39th Annual ACM Symposium on Theory of Computing, pages 621-630. ACM, New York, (2007).10.1145/1250790.1250882Search in Google Scholar

[11] A. Brudnyi and Y. Brudnyi. Methods of geometric analysis in extension and trace problems. Volume 2, volume 103 of Monographs in Mathematics. Birkhäuser/Springer Basel AG, Basel, (2012).10.1007/978-3-0348-0209-3Search in Google Scholar

[12] T. Christiansen and K. T. Sturm. Expectations and martingales in metric spaces. Stochastics, 80(1):1-17, (2008).10.1080/17442500701433640Search in Google Scholar

[13] J. Ding, J. R. Lee, and Y. Peres. Markov type and threshold embeddings. Preprint available at http://arxiv.org/abs/1208.6088,(2012).Search in Google Scholar

[14] S. Doss. Moyennes conditionnelles et martingales dans un espace métrique. C. R. Acad. Sci. Paris, 254:3630-3632, (1962).Search in Google Scholar

[15] A. Dvoretzky. Some results on convex bodies and Banach spaces. In Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960), pages 123-160. Jerusalem Academic Press, Jerusalem, (1961).Search in Google Scholar

[16] M. Émery. Stochastic calculus in manifolds. Universitext. Springer-Verlag, Berlin, 1989. With an appendix by P.-A. Meyer.10.1007/978-3-642-75051-9Search in Google Scholar

[17] A. Es-Sahib and H. Heinich. Barycentre canonique pour un espace métrique à courbure négative. In Séminaire de Probabilités, XXXIII, volume 1709 of Lecture Notes in Math., pages 355-370. Springer, Berlin, (1999).10.1007/BFb0096526Search in Google Scholar

[18] T. Figiel. On the moduli of convexity and smoothness. Studia Math., 56:121-155, (1976).10.4064/sm-56-2-121-155Search in Google Scholar

[19] T. Figiel, W. B. Johnson, and G. Schechtman. Factorizations of natural embeddings of lnp into Lr . I. Studia Math., 89(1):79-103, (1988).10.4064/sm-89-1-79-103Search in Google Scholar

[20] M. Gromov. Random walk in random groups. Geom. Funct. Anal., 13(1):73-146, (2003).10.1007/s000390300002Search in Google Scholar

[21] A. Grothendieck. Résumé de la théorie métrique des produits tensoriels topologiques. Bol. Soc. Mat. São Paulo, 8:1-79, (1953).Search in Google Scholar

[22] S. Heinrich. Ultraproducts in Banach space theory. J. Reine Angew. Math., 313:72-104, (1980).10.1515/crll.1980.313.72Search in Google Scholar

[23] W. B. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert space. In Conference in modern analysis and probability (New Haven, Conn., 1982), volume 26 of Contemp. Math., pages 189-206. Amer. Math. Soc., Providence, RI, (1984).10.1090/conm/026/737400Search in Google Scholar

[24] W. B. Johnson, J. Lindenstrauss, and G. Schechtman. Extensions of Lipschitz maps into Banach spaces. Israel J. Math., 54(2):129-138, (1986).10.1007/BF02764938Search in Google Scholar

[25] W. B. Johnson, H. P. Rosenthal, and M. Zippin. On bases, finite dimensional decompositions and weaker structures in Banach spaces. Israel J. Math., 9:488-506, (1971).10.1007/BF02771464Search in Google Scholar

[26] J. Jost. Nonpositive curvature: geometric and analytic aspects. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, (1997).Search in Google Scholar

[27] N. J. Kalton. Spaces of Lipschitz and Hölder functions and their applications. Collect. Math., 55(2):171-217, (2004).Search in Google Scholar

[28] N. J. Kalton. Lipschitz and uniform embeddings into `1. Fund. Math., 212(1):53-69, (2011).10.4064/fm212-1-4Search in Google Scholar

[29] N. J. Kalton. The uniform structure of Banach spaces. Math. Ann., 354(4):1247-1288, (2012).10.1007/s00208-011-0743-3Search in Google Scholar

[30] M. Kapovich and B. Leeb. On asymptotic cones and quasi-isometry classes of fundamental groups of 3-manifolds. Geom. Funct. Anal., 5(3):582-603, (1995).10.1007/BF01895833Search in Google Scholar

[31] M. D. Kirszbraun. Über die zusammenziehenden und Lipschitzchen Transformationen. Fundam. Math., 22:77-108, (1934).10.4064/fm-22-1-77-108Search in Google Scholar

[32] U. Lang. Extendability of large-scale Lipschitz maps. Trans. Amer. Math. Soc., 351(10):3975-3988, (1999).10.1090/S0002-9947-99-02265-5Search in Google Scholar

[33] U. Lang, B. Pavlovic, and V. Schroeder. Extensions of Lipschitz maps into Hadamard spaces. Geom. Funct. Anal., 10(6):1527-1553, (2000).10.1007/PL00001660Search in Google Scholar

[34] U. Lang and T. Schlichenmaier. Nagata dimension, quasisymmetric embeddings, and Lipschitz extensions. Int. Math. Res. Not., (58):3625-3655, (2005).10.1155/IMRN.2005.3625Search in Google Scholar

[35] U. Lang and V. Schroeder. Kirszbraun’s theorem and metric spaces of bounded curvature. Geom. Funct. Anal., 7(3):535-560, (1997).10.1007/s000390050018Search in Google Scholar

[36] J. R. Lee and A. Naor. Extending Lipschitz functions via random metric partitions. Invent. Math., 160(1):59-95, (2005).10.1007/s00222-004-0400-5Search in Google Scholar

[37] J. Lindenstrauss and A. Pełczynski. Absolutely summing operators in Lp-spaces and their applications. Studia Math., 29:275-326, (1968).10.4064/sm-29-3-275-326Search in Google Scholar

[38] J. Lindenstrauss and H. P. Rosenthal. The Lp spaces. Israel J. Math., 7:325-349, (1969).10.1007/BF02788865Search in Google Scholar

[39] K. Makarychev and Y. Makarychev. Metric extension operators, vertex sparsifiers and Lipschitz extendability. In 51th Annual IEEE Symposium on Foundations of Computer Science, pages 255-264, (2010).10.1109/FOCS.2010.31Search in Google Scholar

[40] B. Maurey. Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces Lp. Société Mathématique de France, Paris, 1974. With an English summary, Astérisque, No. 11.Search in Google Scholar

[41] B. Maurey. Type, cotype and K-convexity. In Handbook of the geometry of Banach spaces, Vol. 2, pages 1299-1332. North-Holland, Amsterdam, (2003).10.1016/S1874-5849(03)80037-2Search in Google Scholar

[42] M. Mendel and A. Naor. Metric cotype. Ann. of Math. (2), 168(1):247-298, (2008).10.4007/annals.2008.168.247Search in Google Scholar

[43] M. Mendel and A. Naor. Nonlinear spectral calculus and super-expanders. To appear in Inst. Hautes Études Sci. Publ. Math., available at http://arxiv.org/abs/1207.4705,(2012).Search in Google Scholar

[44] M. Mendel and A. Naor. Expanders with respect to Hadamard spaces and random graphs. Preprint, (2013).10.1145/2554797.2554829Search in Google Scholar

[45] M. Mendel and A. Naor. Markov convexity and local rigidity of distorted metrics. J. Eur. Math. Soc. (JEMS), 15(1):287-337, (2013).10.4171/JEMS/362Search in Google Scholar

[46] V. D. Milman and G. Schechtman. Asymptotic theory of finite-dimensional normed spaces, volume 1200 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1986. With an appendix by M. Gromov.Search in Google Scholar

[47] G. J. Minty. On the extension of Lipschitz, Lipschitz-Hölder continuous, and monotone functions. Bull. Amer. Math. Soc., 76:334-339, (1970).10.1090/S0002-9904-1970-12466-1Search in Google Scholar

[48] A. Naor. A phase transition phenomenon between the isometric and isomorphic extension problems for Hölder functions between Lp spaces. Mathematika, 48(1-2):253-271 (2003), (2001).10.1112/S0025579300014480Search in Google Scholar

[49] A. Naor. An introduction to the Ribe program. Jpn. J. Math., 7(2):167-233, (2012).10.1007/s11537-012-1222-7Search in Google Scholar

[50] A. Naor, Y. Peres, O. Schramm, and S. Sheffield. Markov chains in smooth Banach spaces and Gromov-hyperbolic metric spaces. Duke Math. J., 134(1):165-197, (2006). 10.1215/S0012-7094-06-13415-4Search in Google Scholar

[51] A. Naor and G. Schechtman. Remarks on non linear type and Pisier’s inequality. J. Reine Angew. Math., 552:213-236, (2002).10.1515/crll.2002.092Search in Google Scholar

[52] A. Naor and L. Silberman. Poincaré inequalities, embeddings, and wild groups. Compos. Math., 147(5):1546-1572, (2011).10.1112/S0010437X11005343Search in Google Scholar

[53] A. Navas. An L1 ergodic theorem with values in a non-positively curved space via a canonical barycenter map. Ergodic Theory Dynam. Systems, FirstView:1-15.Search in Google Scholar

[54] S.-i. Ohta. Extending Lipschitz and Hölder maps between metric spaces. Positivity, 13(2):407-425, (2009).10.1007/s11117-008-2202-2Search in Google Scholar

[55] S.-i. Ohta. Markov type of Alexandrov spaces of non-negative curvature. Mathematika, 55(1-2):177-189, (2009).10.1112/S0025579300001005Search in Google Scholar

[56] A. Pietsch. Absolut p-summierende Abbildungen in normierten Räumen. Studia Math., 28:333-353, (1966/1967).10.4064/sm-28-3-333-353Search in Google Scholar

[57] G. Pisier. Martingales with values in uniformly convex spaces. Israel J. Math., 20(3-4):326-350, (1975).10.1007/BF02760337Search in Google Scholar

[58] G. Schechtman. More on embedding subspaces of Lp in lnr . Compositio Math., 61(2):159-169, (1987).Search in Google Scholar

[59] K.-T. Sturm. Nonlinear martingale theory for processes with values in metric spaces of nonpositive curvature. Ann. Probab., 30(3):1195-1222, (2002).10.1214/aop/1029867125Search in Google Scholar

[60] K.-T. Sturm. Probability measures on metric spaces of nonpositive curvature. In Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002), volume 338 of Contemp. Math., pages 357-390. Amer. Math. Soc., Providence, RI, (2003).10.1090/conm/338/06080Search in Google Scholar

[61] M. Talagrand. Embedding subspaces of L1 into lN1 . Proc. Amer. Math. Soc., 108(2):363-369, (1990).10.2307/2048283Search in Google Scholar

Received: 2013-01-21
Accepted: 2013-05-12
Published Online: 2013-05-28

©2013 Versita Sp. z o.o.

This content is open access.

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.2478/agms-2013-0003/html
Scroll to top button