Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access December 10, 2014

Analysis of Smart Piezo-Magneto-Thermo-Elastic Composite and Reinforced Plates: Part I – Model Development

D. A. Hadjiloizi, A.L. Kalamkarov, Ch. Metti and A. V. Georgiades

Abstract

A comprehensive micromechanical model for the analysis of a smart composite piezo-magneto-thermoelastic thin plate with rapidly-varying thickness is developed in the present paper. A rigorous three-dimensional formulation is used as the basis of multiscale asymptotic homogenization. The asymptotic homogenization model is developed using static equilibrium equations and the quasi-static approximation of Maxwell’s equations. The work culminates in the derivation of a set of differential equations and associated boundary conditions. These systems of equations are called unit cell problems and their solution yields such coefficients as the effective elastic, piezoelectric, piezomagnetic, dielectric permittivity and others. Among these coefficients, the so-called product coefficients are also determined which are present in the behavior of the macroscopic composite as a result of the interactions and strain transfer between the various phases but can be absent from the constitutive behavior of some individual phases of the composite material. The model is comprehensive enough to allow calculation of such local fields as mechanical stress, electric displacement and magnetic induction. In part II of this work, the theory is illustrated by means of examples pertaining to thin laminated magnetoelectric plates of uniform thickness and wafer-type smart composite plates with piezoelectric and piezomagnetic constituents. The practical importance of the model lies in the fact that it can be successfully employed to tailor the effective properties of a smart composite plate to the requirements of a particular engineering application by changing certain geometric or material parameters. The results of the model constitute an important refinement over previously established work. Finally, it is shown that in the limiting case of a thin elastic plate of uniform thickness the derived model converges to the familiar classical plate model.

References

[1] Newnham R. E., Skinner D. P., Cross L. E., Connectivity and piezoelectric-pyroelectric composites,Mat. Res. Bull. 13 (1978) 525-536. 10.1016/0025-5408(78)90161-7Search in Google Scholar

[2] Nan C.-W., Bichurin M. I., Dong S., Viehland D. and Srinivasan G., Multiferroic magnetoelectric composites: Historical perspective, status, and future directions, J. Appl. Phys 031101(1) – 031101 (2008) (35) . 10.1063/1.2836410Search in Google Scholar

[3] Bichurin M., Petrov V., Priya S., Bhalla A., Multiferroic magnetoelectric composites and their applications, Advances in Condensed Matter Physics, Article ID 129794 (2012) 1-3. Search in Google Scholar

[4] Srinivasan G., Magnetoelectric composites, Annual Review of Materials Research, 40 (2010) 153-178. Search in Google Scholar

[5] Bhatra D., Masud Md., De S. K., Chauduri B. K., Large magnetoelectric effect and low-loss high relative permittivity in 0-3 CuO/PVDF composite films exhibiting unusual ferromagnetism at room temperature, J. Phys. D: Appl. Phys. 45 (2012) 485002. Search in Google Scholar

[6] Zhou H.-M., Li C., Xuan L.-M., Wei J., Zhao J.-X. Equivalent circuit method research of resonant magnetoelectric characteristic in magnetoelectric laminate composites using nonlinear magnetostrictive constitutive model, Smart Materials and Structures 20 (2011) 035001. Search in Google Scholar

[7] Ju S., Chae S. H., Choi Y., Lee S., Lee H. W., Ji C.-H., A low frequency vibration energy harvester using magnetoelectric laminate composite, Smart Materials and Structures 22 (2013) 115037. Search in Google Scholar

[8] Oh S. R., Wong T. C., Tan C. W., Yao K., Tay F. E., Fabrication of polymer multilayers on flexible substrates for energy harvesting, Smart Materials and Structures 23 (2014) 015013. Search in Google Scholar

[9] Semenov A. A., Karmanenko S. F., Demidov V. E., Kalinikos B. A., Srinivasan G., Slavin A. N., Mantese J. V., Ferriteferroelectric layered structures for electrically and magnetically tunable microwave resonators, Applied Physics Letters 88 (2006) 033503. Search in Google Scholar

[10] Lottermoser T., Lonkai T., Amann U., Hohlwein D., Ihringer J., Fiebig M., Magnetic phase control by an electric field, Nature 430 (2004) 541-544. 10.1038/nature02728Search in Google Scholar

[11] Shen Y., McLaughlin K. L., Gao J., Gray D., Shen L., Wang Y., Li M., Berry D., Li J., Viehland D. AC magnetic dipole localization by a magnetoelectric sensor, Smart Materials and Structures 21 (2012) 065007. 10.1088/0964-1726/21/6/065007Search in Google Scholar

[12] Zhai J., Xing Z., Dong S., Li J., Viehland D., Detection of pico- Tesla magnetic fields using magnetoelectric sensors at room temperature, Applied Physics Letters 88 (2006) 062510. 10.1063/1.2172706Search in Google Scholar

[13] Harshe G., Doherty J. P., Newnham R. E., Theoretical modeling of 3-0/0-3 magnetoelectric composites, International Journal of Applied Electromagnetics in Materials, 4(2) (1993) 145-159 Search in Google Scholar

[14] Harshe G., Doherty J. P., Newnham R. E., Theoretical modeling of multilayer magnetoelectric composites, International Journal of Applied Electromagnetics in Materials, 4(2) (1993) 161- 171 . Search in Google Scholar

[15] Avellaneda M., Harshé G., Magnetoelectric effect in piezoelectric/ magnetostrictive multilayer (2-2) composites, J. Intel.Mat. Syst. Str., 5 (1994) 501-513. 10.1177/1045389X9400500406Search in Google Scholar

[16] Huang J. H., Kuo W. S., The analysis of piezoelectric/ piezomagnetic compositematerials containing ellipsoidal inclusions, Journal of Applied Physics, 81(3) (1997) 1378-1386 . 10.1063/1.363874Search in Google Scholar

[17] Huang J. H., Analytical predictions for themagnetoelectric coupling in piezomagnetic materials reinforced by piezoelectric ellipsoidal inclusions, Physical Review B, 58(1) (1998) 12-15. 10.1103/PhysRevB.58.12Search in Google Scholar

[18] Huang J. H., Chiu Y. H.,Liu H. K., Magneto-Electro-Elastic Eshelby tensors for a piezoelectric-piezomagnetic composite reinforced by ellipsoidal inclusions, Journal of Applied Physics, 83(10) (1998) 5364-5370. 10.1063/1.367365Search in Google Scholar

[19] Huang J. H., Liu H. K., Dai W. L., The optimized fiber volume fraction for magnetoelectric coupling effect in piezoelectricpiezomagnetic continuous fiber reinforced composites International, Journal of Engineering Science, 38(11) (2000) 1207- 1217. 10.1016/S0020-7225(99)00073-7Search in Google Scholar

[20] Bichurin M. I., Petrov V. N., Srinivasan G., Modeling of magnetoelectric effect in ferromagnetic/piezoelectricmultilayer composites, Ferroelectrics, 280 (2002) 165-175. Search in Google Scholar

[21] Bichurin M. I., Petrov V. N., Averkin S. V., Liverts E., Present status of theoretical modeling the magnetoelectric effect in magnetostrictive-piezoelectric nanostructures. Part I: Low frequency electromechanical resonance ranges, J. Appl. Phys., 107(5), (2010) 053904(1)-053904(11). Search in Google Scholar

[22] Soh A. K., Liu J. X., On the constitutive equations of magnetoelectroelastic solids, Journal of Intelligent Materials Systems and Structures, 16 (2005) 597-602. Search in Google Scholar

[23] Bravo-Castillero J., Rodrigues-Ramos R., Mechkour H., Otero J., Sabina F.J., Homogenization of magneto-electro-elastic multilaminated materials, Q J Mechanics Appl Math, 61(3) (2008) 311-332 . 10.1093/qjmam/hbn010Search in Google Scholar

[24] Ni Y., Priya S. and Khachaturyan A. G., Modeling of magnetoelectric effect in polycrystalline multiferroic laminates influenced by the orientations of applied electric/magnetic fields, J Appl Phys, 105 (2009) 083914(1)-083914(4). Search in Google Scholar

[25] Akbarzadeh A. H., Babaei M. H., Chen Z. T., The thermoelectromagnetoelastic behavior of a rotating functionally graded piezoelectric cylinder, Smart Mater. Struct., 20 (2011) 065008(1)- 065008(11). Search in Google Scholar

[26] Eshelby J. D., The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. R. Soc. Lond. A, 241(1226) (1957) 376-396. 10.1098/rspa.1957.0133Search in Google Scholar

[27] Mori T., Tanaka K., Average stress in matrix and average energy of materials with misfitting inclusions, Acta Metallurgica et Materialia, 21 (1973) 571-574. Search in Google Scholar

[28] Kirchner H. O. K. , Alshits V. I., Elastically anisotropic angularly inhomogeneous media II. The Green’s function for piezoelectric, piezomagnetic and magnetoelectric media, Philosophical Magazine A, 74(4) (1996) 861-885. 10.1080/01418619608242165Search in Google Scholar

[29] Pan E., Heyliger R. P., Free vibrations of simply supported and multilayered magneto-electro-elastic plates, Journal of Sound and Vibration, 252(3) (2002) 429-442. 10.1006/jsvi.2001.3693Search in Google Scholar

[30] Benveniste Y., Milton G. W., New exact results for the effective electric, elastic, piezoelectric and other properties of composite ellipsoid assemblages, Journal of the Mechanics and Physics of Solids, 51(10) (2003) 1773-1813. 10.1016/S0022-5096(03)00074-7Search in Google Scholar

[31] Nan C. W., Magnetoelectric effect in composite of piezoelectric and piezomagnetic phases, Physical ReviewB, 50(9) (1994) 6082-6088. 10.1103/PhysRevB.50.6082Search in Google Scholar

[32] Spyropoulos C. P., Sih G. C. , Song Z. F., Magnetoelectroelastic composite with poling parallel to plane of line crack under out-of-plane deformation, Theoretical and Applied Fracture Mechanics, 40(2) (2003) 281-289. 10.1016/S0167-8442(03)00021-1Search in Google Scholar

[33] Tang T., Yu W., Variational Asymptotic homogenization of heterogeneous electromagnetoelastic materials, Int. J. Eng. Sci., 46 (2008) 741-757. Search in Google Scholar

[34] Tang T., Yu W., Micromechanical modeling of the multiphysical behavior of smart materials using the variational asymptotic method, SmartMater. Struct., 18(12) (2009) 125026 (1)-125026 (14). 10.1088/0964-1726/18/12/125026Search in Google Scholar

[35] Sunar M., Al-Garni Z., Ali M. H., Kahraman R., Finite Element modeling of thermopiezomagnetic smart structures, AIAA Journal, 40(9) (2002) 1846-1851. 10.2514/2.1862Search in Google Scholar

[36] Lee J., Boyd I.V. J.G., Lagoudas D.C., Effective properties of three-phase electro-magneto-elastic composites, Int. J. Eng. Sci., 43 (2005) 790-825. Search in Google Scholar

[37] Liu Y. X., Wan J. G., Liu J.-M., Nan C. W., Numerical modeling of magnetoelectric effect in a composite structure, J. Appl. Phys., 94(8) (2003) 5111-5117. 10.1063/1.1610806Search in Google Scholar

[38] Mininger X., Galopin N., Dennemont Y., Bouillault F., 3D finite element model formagnetoelectric sensors, The European Physical Journal of Applied Physics, 52(2) (2010) 23303(1)- 23303(5). 10.1051/epjap/2010078Search in Google Scholar

[39] Sun K. H., Kim Y. Y., Design ofmagnetoelectric multiferroic heterostructures by topology optimization, J. Phys. D: Appl. Phys., 44 (2011) 185003(1)- 185003(8). Search in Google Scholar

[40] Bensoussan A., Lions J. L., Papanicolaou G., Asymptotic analysis for periodic structures, Amsterdam: North-Holland, 1978. Search in Google Scholar

[41] Sanchez-Palencia E., Non-Homogeneous media and vibration theory. Lecture Notes in Physics, Berlin: Springer-Verlag, 1980. Search in Google Scholar

[42] Bakhvalov N., Panasenko G., Homogenisation: Averaging processes in periodic media, Amsterdam: Kluwer Academic Publishers, 1984. Search in Google Scholar

[43] Cioranescu D., Donato P., An Introduction to homogenization ,Oxford: Oxford University Press, 1999. Search in Google Scholar

[44] Kalamkarov A. L., Composite and Reinforced Elements of Construction ,New York: Wiley,1992. Search in Google Scholar

[45] Kalamkarov A. L., Kolpakov A. G., Analysis, design and optimization of composite structures ,New York: Wiley, 1997. Search in Google Scholar

[46] Kalamkarov A. L., Georgiades A. V., Modeling of Smart Composites on Account of Actuation, Thermal Conductivity and Hygroscopic Absorption Composites part B Eng, 33 (2002) 141- 152. Search in Google Scholar

[47] Georgiades A. V., Challagulla K. S., Kalamkarov A. L., Asymptotic homogenization modeling of smart composite generally orthotropic grid-reinforced shells. Part II-Applications, European Journal of Mechanics A-Solids, 29 (2010) 541-556. 10.1016/j.euromechsol.2010.03.006Search in Google Scholar

[48] Hassan E. M., Kalamkarov A. L., Georgiades A. V., Challagulla K. S., Asymptotic homogenization model for smart 3D gridreinforced composite structures with generally orthotropic constituents, SmartMaterials and Structures, 18(7) art. (2009) 075006. 10.1088/0964-1726/18/7/075006Search in Google Scholar

[49] Saha G. C., Kalamkarov A. L., Georgiades A. V., Micromechanical analysis of effective piezoelastic properties of smart composite sandwich shells made of generally orthotropic materials, Smart Materials and Structures, 16(3) (2007) 866-883. 10.1088/0964-1726/16/3/037Search in Google Scholar

[50] Guedes J. M. and Kikuchi N., Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods, Comput. Methods Appl. Mech. Engrg., 83 (1990) 143-198. 10.1016/0045-7825(90)90148-FSearch in Google Scholar

[51] Sevostianov I., Kachanov M., Effect of interphase layers on the overall elastic and conductive properties of matrix composites. Applications to nanosize inclusion, Int. J. Solids Struct., 44 (2007) 1304-1315. 10.1016/j.ijsolstr.2006.06.020Search in Google Scholar

[52] Duvaut G., Analyse fonctionnelle et méchanique des milieux continus, Proceedings of the 14th IUTAM Congress (Delft, Holland) (1976) 119-132. Search in Google Scholar

[53] Duvaut G., Metellus A.-M., Homogénéisation d’une plaque mince en flexion de structure périodique et symétrique, C.R. Acad. Sci., Ser. A. 283 (1976) 947-950. Search in Google Scholar

[54] Andrianov I. V., Manevich L. I., Shell design using the homogenization method, Uspekhi Mekh, 6 (1983) 3-29. Search in Google Scholar

[55] Andrianov I. V., Lesnichaya V., Manevich L. I., Homogenization methods in the statics and dynamics of ribbed shells (Moscow, Nauka) (1985). Search in Google Scholar

[56] Caillerie D Equations de la diffusion stationnaire dans un domaine comportant une distribution périodique d’inclusions aplaties de grande conductivité, C.R. Acad. Sci., Ser. 1 292(1) (1981) 115-118. Search in Google Scholar

[57] Caillerie D., Homogénéisation des equation de la diffusion stationnaire dans les domaines cylindrique aplatis, Anal. Numér., 15 (1981) 295-319. Search in Google Scholar

[58] Kohn R. V., Vogelius M., A new model for thin plates with rapidly varying thickness, Int. J. of Solids and Struct., 20 (1984) 333-350. Search in Google Scholar

[59] Kohn R. V., Vogelius M., A new model for thin plates with rapidly varying thickness, II: A convergence proof, Quart. J. Appl. Math., 43 (1985) 1-22. Search in Google Scholar

[60] Challagulla K. S., Georgiades A. V., Kalamkarov A. L., Asymptotic homogenization modeling of smart composite gener ally orthotropic grid-reinforced shells. Part I-Theory, European Journal of Mechanics A-Solids, 29 (2010) 530-540. Search in Google Scholar

[61] Kalamkarov A. L., Kolpakov A. G., A new asymptotic model for a composite piezoelastic plate, International Journal of Solids and Structures, 38 (2001) 6027-6044. Search in Google Scholar

[62] Hadjiloizi D. A., Georgiades A. V., Kalamkarov A. L. Dynamic modeling and determination of effective properties of smart composite plates with rapidly varying thickness, International Journal of Engineering Science, 56 (2012) 63-85. Search in Google Scholar

[63] Hadjiloizi D.A., Georgiades, A.V, Kalamkarov, A.L, Jothi S., Micromechanical Model of Piezo-Magneto-Thermo-Elastic Composite Structures: Part I-Theory, European Journal of Mechanics A-Solids, 39, (2013), 298-312. Search in Google Scholar

[64] Hadjiloizi D.A., Georgiades A.V., Kalamkarov A.L, Jothi S., Micromechanical Model of Piezo-Magneto-Thermo-Elastic Composite Structures: Part II-Applications, European Journal ofMechanics A-Solids, 39, (2013), 313-326. Search in Google Scholar

[65] Kalamkarov A. L., Georgiades A. V., Asymptotic homogenization models for smart composite plates with rapidly varying thickness: Part I-Theory, Journal of Multiscale Computational Engineering, 2(1) (2004) 133-148. Search in Google Scholar

[66] Georgiades A.V., Kalamkarov A. L., Asymptotic homogenization models for smart composite plates with rapidly varying thickness: Part II-Applications, Journal ofMultiscale Computational Engineering, 2(1) (2004) 149-174. Search in Google Scholar

[67] Hadjiloizi D.A., Kalamkarov A.L., Metti Ch., Georgiades A.V., Analysis of Piezo-Magneto-Thermo-Elastic Composite and Reinforced Plates: Part II – Applications, Curved and Layered Structures, 1 (2014) 32-58. Search in Google Scholar

[68] Podstrigach Ya. S. and Shvets R.N., Thermoelasticity of Thin Shells, Naukova Dumka Publ., Kiev, 1978. Search in Google Scholar

[69] Podstrigach Ya. S., Lomakin V. A., Kolyano Yu. M., Thermoelasticity of Non-homogeneous Structures, Nauka, Moscow, 1984. Search in Google Scholar

[70] Gibson R. F., Principles of Composite Material Mechanics, McGraw-Hill, New York, 1994. Search in Google Scholar

[71] Kalamkarov A.L. (2014) Asymptotic Homogenization Method and Micromechanical Models for Composite Materials and Thin-Walled Composite Structures, in “Mathematical Methods and Models in Composites,” pp. 1-60, Imperial College Press, London. 10.1142/9781848167858_0001Search in Google Scholar

[72] Kalamkarov A.L. and Challagulla K.S. (2013) Effective Properties of Composite Materials, Reinforced Structures and Smart Composites. Asymptotic Homogenization Approach, in “Effective Properties of Heterogeneous Materials,” Solid Mechanics and Its Applications, Vol. 193, pp. 283-363. Springer, Dordrecht, New York. 10.1007/978-94-007-5715-8_4Search in Google Scholar

[73] Vinson J. R., Sierakowski R. L., The Behavior of Structures Composed of Composite Materials, Kluwer Academic Publishers, Dordrecht, Netherlands, 2002. 10.1007/0-306-48414-5Search in Google Scholar

Received: 2014-8-7
Accepted: 2014-9-11
Published Online: 2014-12-10

© 2014 D. A. Hadjiloizi et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow