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ERROR BOUNDS OF A FULLY DISCRETE PROJECTION

METHOD FOR SYMM’S INTEGRAL EQUATION

S.G. SOLODKY1 AND E. V. LEBEDEVA2

Abstract — The approximation properties of a fully discrete projection method
for Symm’s integral equation with a infinite smooth boundary have been investigated.
For the method, error bounds have been found in the metric of Sobolev’s spaces. The
method turns out to be more accurate compared to the fully discrete collocation method
known before.
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1. Introduction

Pseudodifferential equations arise in solving a wide range of problems containing, in particu-
lar, integral equations of classical mathematical physics (for example, Helmholtz and Laplace
equations with Dirichlet conditions). At present the elliptic pseudodifferential equations ap-
pear to be the most studied. As is known, because these problems are ill-posed in space
L2(0, 1), their solution calls for special techniques. One way to regularize such problems con-
sists in searching for a pair of appropriate spaces on which the equation under consideration
is stable. For example, in [7] a class of problems containing elliptic pseudodifferential equa-
tions was investigated and it was proposed to consider the problem on the scale of Sobolev’s
spaces. In this approach, a stable solution was obtained by a method composed of a fully
discrete trigonometric Galerkin scheme with a two-grid iteration method. In [4], the above
approach was simplified by using a conjugate gradient-type method allowing simple iteration
schemes. Later the investigation above was continued in [5]. Here the generalized minimal
residual method (GMRES) was considered as applied to the same class of pseudodifferential
equations. The investigation of a wide class of pseudodifferential equations, as well as the
problem of recovery of solutions for particular cases of such equations remain important.
So, a straightforward method for solving the first kind equations with the kernel having
logarithmic singularity was proposed in work [11]. Here the discretization was realized with
the help of the interpolation and collocation method on a quasi-uniform grid. In [1], [3],
the following algorithms for the Symm’s integral equation arising in solving the Dirichlet
problem for the Laplace equation were proposed. Namely, in [1] an approximate equation
was constructed with the help of the fully discrete trigonometric collocation method, but in
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[3] the fully discrete projection method was investigated. The present paper continues the
investigation started in [3], and allows us to estimate the accuracy of the method of [3] in
the metric of Sobolev spaces taking into account errors in both parts of the equation under
consideration.

2. Description of the problem

Let us consider the Symm integral equation
∫

Γ

log |x− y|v(y)dsy = g(x), x ∈ Γ, (2.1)

for a closed C∞-smooth boundary Γ of a simple connected domain Ω ⊂ R2. Suppose that
γ(t) : [0, 1] → Γ is C∞-smooth 1-periodic parametrization of the boundary Γ such that
|γ′(t) 6= 0| for any t ∈ [0, 1]. Without loss of generality it can be assumed that the logarithmic
capacity of Γ is distinct from 1. It is known (see [8]) that in this case equation (2.1) is solvable
and has an unique solution. As usual, we rewrite (2.1) as

Au := A0u + Bu = f, (2.2)

where

(A0u)(t) =

1∫

0

log | sin π(t− s)|u(s)ds, (2.3)

(Bu)(t) =

1∫

0

b(t, s)u(s)ds, b(t, s) =





log
|γ(t)− γ(s)|
| sin π(t− s)| , t 6= s,

log(|γ′(t)/π|), t = s.

(2.4)

The eigenfunctions of the operator A0 are trigonometric functions such that

A0e
2πikt =

{
−(2|k|)−1e2πikt, k = ±1,±2, . . . ,

− log 2, k = 0,
(2.5)

and the kernel b(t, s) of the operator B represents a C∞-smooth 1-biperiodic function. To
describe the smoothness properties of b(t, s), we make use of the Gevrey classes of infinitely
differentiable 1-periodic functions [2, p.112]. Denote by Gβ a Gevrey class of order β(β > 1)
of the Roumieu type in both variables. The class Gβ includes the functions b(t, s) that satisfy
the condition

‖b‖2
β,µ :=

∞∑

k,l=−∞
|b̂(k, l)|2e2µ(|k|1/β+|l|1/β) < ∞, (2.6)

where

b̂(k, l) =

1∫

0

1∫

0

e−2πi(kt+ls)b(t, s)dtds

are the Fourier coefficients of b(t, s). Note that by (2.6) for β = 1 it follows that the function
b(t, s) has analytic continuations in both variables into the strip {z : z = t+ is, |s| < µ/(2π)}
of the complex plane.



Error bounds of a fully discrete projection method for Symm’s integral equation 257

Let Hλ, −∞ < λ < ∞ denote Sobolev spaces of the 1-periodic functions by the norm

‖u‖λ :=

(
|û(0)|2 +

∑

n6=0,n∈Z
|n|2λ|û(n)|2

)1/2

,

where û(n) =
∫ 1

0
e−2πintu(t)dt are the Fourier coefficients of the function u(t), with H0 =

L2(0, 1).
Let the right-hand side f of (2.1) belong to Hν+1 for ν > 0. Moreover, assume that

instead of the exact values of the functions f(t) and γ(t) we have at our disposal some of
their perturbations in the knots of the uniform grid, for which the following estimates hold
true: (

n−1

n∑
j=1

|fδ(jn
−1)− f(jn−1)|2

)1/2

6 δ‖f‖ν+1, (2.7)

|γε(im
−1)− γ(im−1)| 6 ε, |γ′ε(im−1)− γ′(im−1)| 6 mε, i = 1, 2, . . . ,m, (2.8)

and the kernel bε(t, s) of the perturbed operator Bε has the form

bε(t, s) =





log
|γε(t)− γε(s)|
| sin π(t− s)| , t 6= s,

log(|γ′ε(t)/π|), t = s.

Then according to [1], the following bound holds:

|bε(km−1, lm−1)− b(km−1, lm−1)| 6




cε

| sin[π(k − l)/m]| , 1 6 k, l 6 m, k 6= l,

cmε, k = l, 1 6 l 6 m.

3. Problem statement and method description

In the general case, to guarantee a stable solution of ill-posed problems it is required to use
special regularization methods, the general principles of whose construction were stated in the
theory of A. N. Tikhonov [9]. Besides, in the finite-dimensional solution of pseudodifferential
equations there is one more way to achieve stability approximation, which consists in the
appropriate choice of the discretization parameters. The regularization of the problem by its
discretization leads to the notion of self-regularization. For example, such an approach was
investigated in [10] within the framework of projection methods for which the conditions for
self-regularization were described. In [12], the application of the interpolation and colloca-
tion method for solving (2.1) was justified without additional regularization, and in [3] the
property of self-regularization for the fully discrete projection method was established.

As is known, Symm’s integral equation (2.1) in space H0 = L2(0, 1) is unstable with
respect to errors of coefficients A and f . Owing to this, small perturbations of the input
data can substantially influence the solution. The typical feature of Eq. (2.1) is the property
of the operator A to create isomorphism on the pair of spaces Hλ and Hλ+1 for all λ. This
fact follows from the isomorphism of the operator A0 : Hλ → Hλ+1 for all λ ∈ (−∞,∞) and
the compactness of the operator B : Hλ → Hλ+1.

The majority of methods for an approximate solution of (2.1) are constructed in view of
this fact. Below a description of two such methods is given.
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Let us first introduce an n-dimensional space of the trigonometrical polynomials

Tn =

{
un : un =

∑

k∈Zn

cke
2πikt

}
, Zn =

{
k : −n

2
< k 6 n

2
, k = 0,±1,±2, . . .

}
.

We denote by Pn the orthogonal projector in the form

Pnu =
∑

k∈Zn

û(k)e2πikt ∈ Tn,

and by Qn the interpolation projector such that Qnu ∈ Tn and on a uniform grid the following
relation takes place:

(Qnu)(jn−1) = u(jn−1), j = 1, 2, ..., n.

Now consider the fully discrete collocation method [1] which consists in approximating
(2.1) with a C∞-smooth 1-periodic kernel b(t, s) by the equation

A′
n,εun,ε,δ := A0un + QnB

′
n,εun,ε,δ = Qnfδ, un ∈ Tn, (3.1)

where

(B′
n,εu)(t) = n−1

n∑
j=1

bε(t, jn
−1)u(jn−1).

For method (3.1) in [1] with n = O((ε + δ)−1/(ν+1)) the error bound

‖u− un,ε,δ‖λ = O

(
δ(ν−λ)/(ν+1) + ε(ν−λ)/(ν+1) log

1

δ + ε

)
(3.2)

was found on the scale of spaces Hλ, −1 6 λ 6 ν. Obviously, for λ = 0 bound (3.2)
characterizes the accuracy of method (3.1) in the metric of L2(0, 1).

Further we describe the fully discrete projection method from [3] and state the corre-
sponding theorem about the error bound for this method. According to [3], the approximate
solution un,m,ε,δ of (2.1) is found from the equation

Am,εun,m,ε,δ := A0un,m,ε,δ + Bm,εun,m,ε,δ = Qnfδ, n > m, (3.3)

where

(Bm,εu)(t) =

1∫

0

bm,ε(t, s)u(s)ds, bm,ε(t, s) = (Qm,t ⊗Qm,sbε)(t, s) =
∑

k,l∈Zm

b̂m,ε(k, l)e2πi(kt+ls),

b̂m,ε(k, l) = m−2

m∑
p,q=1

e−2πi(kp+lq)/mbε(pm
−1, qm−1).

Theorem 3.1. [3] Assume that f ∈ Hν+1 and b(t, s) satisfies (2.6). Besides, let esti-
mates (2.7), (2.8) be true. Then for

m = O

(
2

µβ
logβ 1

ε

)
= O

(
logβ 1

ε

)
, n = O(δ−1/(ν+1))

equation (3.3) is uniquely solvable and

‖u− un,m,ε,δ‖0 6 c‖u‖ν

(
δν/(ν+1) + ε log(3/2)β 1

ε

)
. (3.4)
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For convenience, hereinafter by c, ci we denote different positive constants that do not
depend on m, n, δ, ε.

Note that in [1] the C∞-smooth kernels b(t, s) are considered without any additional
restriction. In contrast to this, in the paper [3] the condition (2.6) on b(t, s) is applied. Such
a restriction allows us to introduce two discretization parameters n and m which take into
account the error levels δ and ε, respectively. This way results in an improvement of the
error bound (3.4), as compared to (3.2) in the case of λ = 0.

The aim of the present paper is to generalize the results from [3] by establishing er-
ror bounds for method (3.3) on the scale of spaces Hλ for all 0 6 λ < ν. Besides, the
corresponding rules for the choice of m, n to minimize these bounds will be obtained.

It is wellknown (see, for example, [6]) that for any n and vn ∈ Tn the operator A : Hλ →
Hλ+1 satisfies the stability inequality

‖vn‖λ 6 dλ‖Avn‖λ+1. (3.5)

Note that for trigonometrical polynomials the inverse Bernstein inequality

‖vn‖ν 6 ξν−λn
ν−λ‖vn‖λ, λ 6 ν, vn ∈ Tn, (3.6)

where ξλ = 2−λ is true.
In [3], it was shown that

A0un,m,δ,ε = Qnfδ −Bm,εun,m,δ,ε ∈ Tn

and un,m,δ,ε ∈ Tn is such that

un,m,δ,ε(t) =
∑

k∈Zn

ûn,m,δ,ε(k)e2πikt.

Here the unknown coefficients ûn,m,δ,ε(k) are determined from the following system of linear
algebraic equations:

λkûn,m,δ,ε(k) +
∑

l∈Zm

b̂m(k,−l)ûn,m,δ,ε(l) = f̂δ,n(k), k ∈ Zm,

λkûn,m(k) = f̂δ,n(k), k ∈ Zn/Zm, (3.7)

where λ0 = − log 2, λk = −(2|k|)−1,

f̂δ,n(k) = n−1

n∑
p=1

e−2πikp/nfδ(pn
−1).

From (3.7) it follows that to determine the element un,m,δ,ε ∈ Tn, it is enough to solve
the system of m < n linear algebraic equations.

4. Auxiliary statements

Lemma 4.1 [3]. Let b(t, s) satisfy condition (2.6). Then for all m > M0, where M0 is
the least integer satisfying the inequality m > 2(βν/µ)β, the following holds true:

‖B −Bm‖H0→Hν 6 c1m
νe−χm1/β‖b‖β,µ (4.1)
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with

χ = χ(β, µ) = µ/21/β, (Bmu)(t) =

1∫

0

bm(t, s)u(s)ds, bm(t, s) = (Qm,t ⊗Qm,sb)(t, s).

Lemma 4.2. Let b(t, s) satisfy condition (2.6) and (2.8) be true, then for 0 6 λ < ν

‖Bm −Bm,ε‖Hλ→Hλ+1 6 c2m
3/2+λε. (4.2)

Proof. To prove this statement, the following estimate [3] is required:

‖Bm −Bm,ε‖H0→H1 6 cm3/2ε.

Using the last inequality and (3.6), we obtain

‖Bm −Bm,ε‖Hλ→Hλ+1 6 ξλm
λ‖Bm −Bm,ε‖Hλ→H1 6

ξλm
λ‖Bm −Bm,ε‖H0→H1 6 c2m

λ+3/2ε.

which proves the lemma.

Lemma 4.3. Let the assumptions of Theorem 3.1 be true. Then for large enough m the
stability inequality is fulfilled for the operator Am,ε = A0 +Bm,ε and arbitrary v ∈ Tn, namely

‖v‖λ 6 d′λ‖Am,εv‖λ+1, n 6 m, 0 6 λ < ν.

Proof. First, let us prove the stability inequality for the operator Am. Using (3.5) and
(4.1), for m > M0 we obtain

‖v‖λ 6 dλ‖Av‖λ+1 6 dλ‖Amv‖λ+1 + dλ‖(A− Am)v‖λ+1 =

dλ‖Amv‖λ+1 + dλ‖(B −Bm)v‖λ+1 6 dλ‖Amv‖λ+1 + c1dλm
λ+1e−χm1/β‖b‖β,µ‖v‖λ.

Let M1 be the least natural number satisfying the inequality mλ+1e−χm1/β
< q/(c1dλ‖b‖β,µ),

where q ∈ (0, 1). Then for all m > m1 := max{M0, M1} the following holds:

‖v‖λ 6 d̃λ‖Amv‖λ+1,

where d̃λ = dλ/(1− c1dλm
λ+1
1 e−χm

1/β
1 ‖b‖β,µ).

Further, in view of the last formula and (4.2), we get

‖v‖λ 6 d̃λ‖Amv‖λ+1 6 d̃λ‖Am,εv‖λ+1 + d̃λ‖(Am − Am,ε)v‖λ+1 =

= d̃λ‖Am,εv‖λ+1 + d̃λ‖(Bm −Bm,ε)v‖λ+1 6 d̃λ‖Am,εv‖λ+1 + c2d̃λm
λ+3/2ε‖v‖λ.

Let M2 be the least natural number for which the inequality m3/2+λε < q/(c2d̃λ) is true.
Then for all m = m(ε) > m2 := max{m1,M2} the following takes place:

‖v‖λ 6 d′λ‖Am,εv‖λ+1,

where d′λ = d̃λ/(1− cd̃λm
λ+3/2
2 ε). This completes the proof.
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Lemma 4.4. Let the conditions of Theorem 3.1 and (2.7) be satisfied, then for 0 6 λ < ν

‖un,m − un,m,δ‖λ 6 c3n
λ+1δ‖u‖ν , c3 = d̃λξλ+1‖A‖Hν→Hν+1 , (4.3)

where the element un,m is the solution of the equation Amun,m = Qnf , and the element un,m,δ

is the solution of the equation Amun,m,δ = Qnfδ.

Proof. Since un,m − un,m,δ ∈ Tn, then from (3.6) and Lemma 3 it follows that

‖un,m − un,m,δ‖λ 6 d̃λ‖Am(un,m − un,m,δ)‖λ+1 = d̃λ‖Amun,m − Amun,m,δ‖λ+1

= d̃λ‖Qnf −Qnfδ‖λ+1 6 ξλ+1n
λ+1d̃λ‖Qnf −Qnfδ‖0.

Further we need an additional relation. According to Lemma 2.1 [1], for all f ∈ Hν+1 it
is true that

‖Qn(f − fδ)‖0 6 δ‖f‖ν+1.

In view of this inequality we finally obtain

‖un,m − un,m,δ‖λ 6 d̃λξλ+1n
λ+1δ‖f‖ν+1 = d̃λξλ+1n

λ+1δ‖Au‖ν+1 6 c3n
λ+1δ‖u‖ν .

5. Main results

Below the error bound for the fully discrete projection method (3.3) will be found in the
metric of spaces Hλ, 0 6 λ < ν.

Theorem 5.1. Let the conditions of Theorem 3.1, (2.7), (2.8) be satisfied. Then for
0 6 λ < ν

‖u− un,m,ε,δ‖λ 6 c4‖u‖ν(n
−ν+λ + nλ+1δ + mλ+1e−χm1/β

+ m3/2+λε). (5.1)

Proof. We will prove Theorem 2, based on the scheme used earlier when proving [3,
Theorem 2.1].

Obviously, the following inequality is true:

‖u− un,m,ε,δ‖λ 6 ‖u− un,m‖λ + ‖un,m − un,m,δ‖λ + ‖un,m,δ − un,m,ε,δ‖λ (5.2)

which is an error of method (3.3). The bound of the first term is established in the corollary
from [3, Theorem 2.1]:

‖u− un,m‖λ 6 c(n−ν+λ + mλ+1e−χm1/β

)‖b‖β,µ‖u‖ν , 0 6 λ < ν, (5.3)

and represents an error bound of method (3.3) in the case of exact input data for Eq. (2.1).
The bound of the second term is given by Lemma 4.4. Using Lemmas 4.2 and 4.3, we find
the bound for the norm of the element un,m,δ − un,m,ε,δ ∈ Tn:

‖un,m,δ − un,m,ε,δ‖λ 6 d′λ‖Am,ε(un,m,δ − un,m,ε,δ)‖λ+1 = d′λ‖Am,εun,m,δ −Qnfδ‖λ+1 =

d′λ‖Am,εun,m,δ − Amun,m,δ‖λ+1 6 d′λ‖Am,ε − Am‖Hλ→Hλ+1‖un,m,δ‖λ =

d′λ‖Bm,ε −Bm‖Hλ→Hλ+1‖un,m,δ‖λ 6 d′λc2εm
3/2+λ‖un,m,δ‖λ. (5.4)

It remains to estimate the norm of the element un,m,δ. By means of Lemma 4 and (5.3) we
get

‖un,m,δ‖λ 6 ‖un,m‖λ + ‖un,m,δ − un,m‖λ 6 ‖u‖λ + ‖u− un,m‖λ + c3n
λ+1δ‖u‖ν 6
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‖u‖λ + c(n−ν+λ + mλ+1e−χm1/β

)‖u‖ν + c3n
λ+1δ‖u‖ν 6

‖u‖ν(1 + c(n−ν+λ + mλ+1e−χm1/β

) + c3n
λ+1δ) 6 c‖u‖ν .

Substituting the estimate obtained above into (5.4), we have

‖un,m,δ − un,m,ε,δ‖λ 6 cεm3/2+λ‖u‖ν .

As a result, from (5.2) it follows that

‖u− un,m,ε,δ‖λ 6 c(n−ν+λ + mλ+1e−χm1/β

)‖u‖ν + c3n
λ+1δ‖u‖ν + cεm3/2+λ‖u‖ν 6

‖u‖νc(n
−ν+λ + mλ+1e−χm1/β

+ nλ+1δ + εm3/2+λ).

Thus, the proof of Theorem 2 is completed.
In the following statement, the rule for the choice of the discretization parameters m and

n will be formulated. This rule in method (3.3) allows us to decrease the error bound (5.1)
(by an order of magnitude) depending on the values of δ and ε.

Theorem 5.2. Assume that f ∈ Hν+1, b(t, s) satisfies (2.6) and estimates (2.7), (2.8)
are true. If the discretization parameters m and n fulfil the relations

m = O

(
χ−β logβ 1

ε

)
, (5.5)

n = O(δ−1/(ν+1)), (5.6)

then for 0 6 λ < ν the error of method (3.3) has the following bound:

‖u− un,m,ε,δ‖λ 6 c‖u‖ν

(
δ(ν−λ)/(ν+1) + ε logβ(3/2+λ) 1

ε

)
. (5.7)

Proof. Obviously, the sum of the first two terms in the right-hand side of (5.1) achieves
the minimum (as to their orders) when their orders coincide, i.e.,

n−ν+λ ∼ nλ+1δ.

From this rule (5.6) for the choice of the parameter n follows. Similar reasoning permits
obtaining rule (5.5) for the choice of the discretization parameter m.

Remark 5.1. Compare bounds (3.2) and (5.7) describing the accuracy of methods (3.1)
and (3.3) respectively, on the scale of spaces Hλ. For δ, both methods provide the same
order of error. On the other hand, the quantity of the component depending on ε is much
less (by an order of magnitude) in (5.7). In the case of λ = 0, bound (5.7) for method (3.3)
was established earlier in [3] (see Theorem 3.1).
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1. G. Bruckner, S. Prössdorf, and G. Vainikko, Error bounds of discretization methods for boundary
integral equations with noisy data, Applicable Analysis. 63 (1996), pp. 25–37.

2. V. I. Gorbachuk and M. L. Gorbachuk, Boundary value problems for operator differential equations,
Kluwer Academic Publishers, Dordrecht, Boston, London. 1991.
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